Spherical varieties: Lecture 22

Local geometry of sph. varieties

X sph. G-var.

V Yo open G-orbit

Y any G-orbit

XY = X open B-chart

Note: X covered by $g \cdot X_Y$ over all $Y \subset X$, $g \in G$ (may choose finite subcover) $P = P_Y = \{g \in G \mid g \cdot X_Y^\circ = X_Y^\circ\} \supset B$ parabolic subgrp. of GConnected $= \{g \in G \mid g \cdot D = D, \forall B - stable <math>D \subset X \}$

Reference en parabolic subgrps.:
[Humphregs, LAG, \$30]

Levi decomposition: P = Pu x L , T = [L,L].T

uni pot. red.

radical Levi subgrp. semisimple

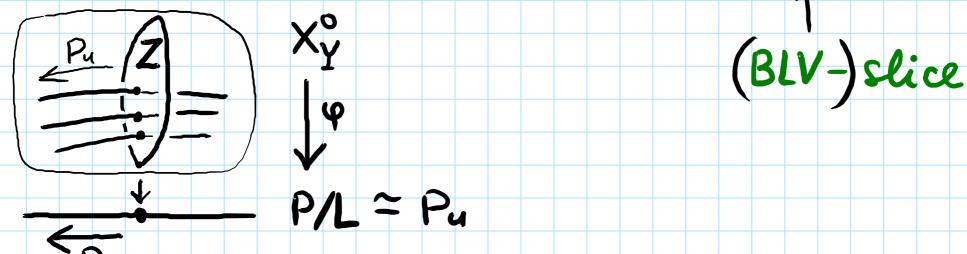
Example: G = Gln, B =

det = 1': equations for [L,L]

Local Structure Thm. (Brion-Luna-Vust 1986)

I closed L-stable Z = X & S.t.:

• $X_{Y}^{\circ} = P \cdot Z \simeq P \times^{L} Z \simeq P_{4} \times Z$



- · Z is aff. sph. L-variety w. closed L-orbit YNZ
- \wedge $\wedge_Z = \wedge_X$

$$\mathcal{E}_{YNZ} = \mathcal{E}_{Y}$$

Proof: 1) May assume X=Xx Then XXX = U D

Y DESIST contain no G-orbit $\Rightarrow S = m \cdot \Sigma D \quad (m \gg 0) \text{ is Cartien}$ w. stabilizer P $= \text{div}(S), \quad S \in H^0(X, O(S))^{(P)}$ (m>>0) is Cartier $\varphi: X \longrightarrow g^*, \langle \varphi(x), \xi \rangle := \frac{\xi \cdot J(x)}{J(x)}, \forall \xi \in g$ • P-equivar.

Exercise 1: Check this. • regular on $X_Y^0 = \{s \neq 0\}$ 2) cy* = of via inv. non-deg. inner prod.: $(31y) = tr(3\cdot y)$ for $G \hookrightarrow GL_n$ [Onishchik-Vinberg, LG-8-AG, Chap. 4, \$1] of ->olln

Properties:
$$(\cdot | \cdot)$$
 non-deg. on 4
 $(og_{\alpha} | og_{\beta}) = 0$ unless $\beta = -d$
 $(4 | og_{\alpha}) = 0$
 $(\cdot | \cdot)$ is \mathbb{Q} -valued and pos. definite on $\Lambda(T) \subset 4^* \simeq 4$
 $\varphi = 4 \oplus \bigoplus g_{\alpha}$
 $(\alpha|\lambda) \geq 0$
 $\varphi = 4 \oplus \bigoplus g_{\alpha}$
 $(\alpha|\lambda) \geq 0$
 $(\alpha|\lambda) \geq 0$

Hence: $\varphi(x) \in \lambda + \varphi_{\alpha}$, $\forall x \in X_{\alpha}^{\circ}$

$$φ: χ_y^* \longrightarrow λ + ρ_u = οg ≃ g* P - equivar.$$
Claim $λ + ρ_u = Ad(P) \cdot λ ≃ P/L$

Proof of Claim: $od(λ) = 0$ on f

$$= (α|λ) \cdot id \text{ on } ogα$$

$$\Rightarrow [f,λ] = 0, [f_u,λ] = f_u$$

$$\Rightarrow P(λ) λ + f_u, P_λ = L$$

$$\Rightarrow Ad(P) \cdot λ = Ad(P_u) \cdot λ ≃ P_u \stackrel{exp}{\sim} f_u$$

$$\Rightarrow Ad(P) \cdot λ = λ + f_u$$

Thus
$$\varphi: \times_{Y}^{\circ} \longrightarrow \lambda + \beta_{n} \cong P/L$$
 $\Rightarrow \times_{Y}^{\circ} \cong P \times^{L} Z$, $Z = \varphi^{-1}(\lambda)$

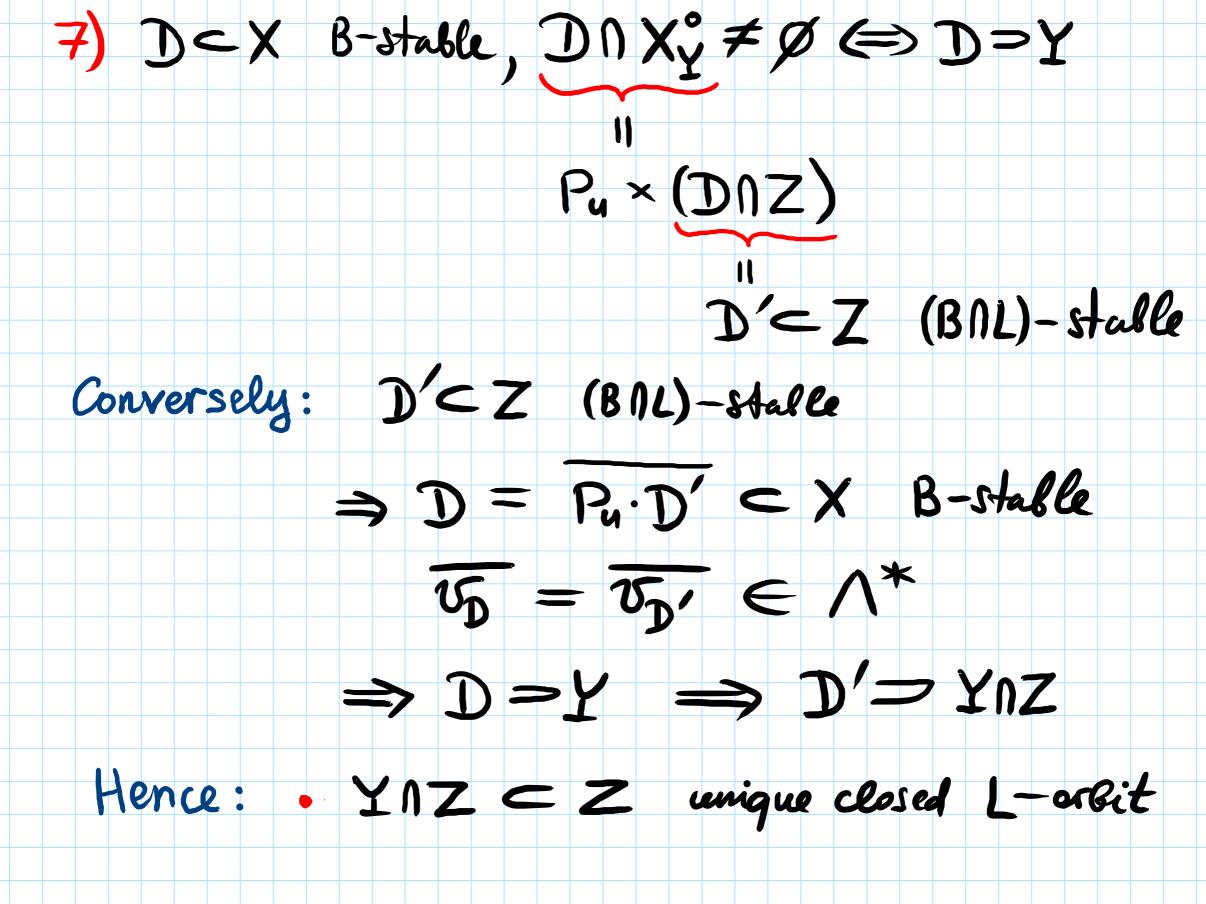
5) $\times_{Y}^{\circ} \cong Y^{\circ}$ open B -orbit, $B = P_{n} \times (B \cap L)$
 $\Rightarrow Z \cong Y^{\circ} \cap Z$ open $(B \cap L)$ -orbit

 $\Rightarrow Z = y^{\circ} \cap Z$ open $(B \cap L)$ -orbit

6) $f \in k(x)^{(B)} \implies f' = f|_{Z} \in k(Z)^{(B \cap L)}$

Conversely: $f' \in k(Z)^{(B \cap L)} \longrightarrow f \in k(X)^{(B)}$
 $f(u \cdot z) = f'(z)$
 $\forall u \in P_{u}, z \in Z$

Hence: $\Lambda_{Z} = \Lambda_{X}$



•
$$\mathcal{E}_{Y \cap Z} = \text{cone}(\overline{v_D}, D' = Z(B \cap L) - \text{stable})$$

= cone
$$(\overline{v_D} \mid D = x \text{ B-stable}) = \mathcal{E}_Y$$

•
$$D' \in D^{Y \cap Z} \iff L \cdot D' \neq D' \iff P \cdot D \neq D$$