Spherical varieties: Lecture 2

Prerequisites: Basic knewledge of:

- · Alg. geometry
- · Alg. groups and their representations

References:

- · I. Shafarevich. Basic alg. geometry
- · R. Hartshorne. Alg. geometry. Chap. 1.
- . J. Humphreys. Linear alg. graups.
- T. Springer __ /- /- /- /-

Digest Alg. geometry: ground field & alg. closed chark=0 May assume k = C $A^n = affine space of dim = n$ P = projective space af dem = n Affine Variety X = A' given by equations $f_1 = \ldots = f_m = 0$ where $f: \in k[x_1,...,x_n]$ Zariski topology: Closed Subsets = aff. subvarieties R= C: classical Hausdorff topology included from A = C' Topologial terms refer to Zaviski topology Kegular functions on open UCX: $f: U \rightarrow k$ s.t. locally $f = \frac{p}{q}$, $p, q \in k [x_1, ..., x_n]$

Stracture sheaf: Ox (U) = { reg. f: U-> k} General alg. variety = top. space X w. shoof of functions $\mathcal{O} = \mathcal{O}_X : open \mathcal{U} \subset X$ s.t. $X = U_1 U ... U U_s$ G(U) U_i open, $(U_i, O|_{U_i}) \simeq aff.$ variety Example: P = Ao U A, U... U A, projective varieties = closed subsets in P X quasiaffine if X open in Some aff. Variety quasiproj. if X open in some proj. vas. Exercise 1: X = 1A \ pt quasiaff. But not affine Notation: O(X) = : k[X] used for (quasi) affine X

X irreducible if $X \neq Z, UZ_2$, $Z_i \nsubseteq X$ In this case: rational function field k(X) == { f reg. on some open UCX} In goneral: 3! irr. clecomposition $X = X_1 U... U X_k$ Xi closed irr., $X_i \notin X_j$ Morphism et alg. Varieties φ: X -> Y Continuous map s.4. $O_X(\pi^!(u)) \leftarrow O_Y(u)$ $Y = \mathbb{A}^n \implies \varphi = (f_1, ..., f_n), f_i \in \mathcal{O}(X)$

1	Pa		(A)	V	(1.1/	10																
	C		9			7																
	A	lg.	a	ro	gu	-		C	100	un	+	- 0	iff.	a	lg.	Va	Ni (efe	1	प		
		O	Ø																			
							C	1						C			4 \					
							7.	7.	C	7 ×	S		7	GF)		75	לע	 	> 0	1·n		
										G			> (G F		9		•	q -	1		
Afel	Liu		Val	i ex	fy									ر ا		0			d			
					d			ar	P	Y	no	mh	i sh	as								
B		G	>	•		G	•						. ^	10								
		7		•		G	1.3			_14	· gi	O U	P	/(
																						n ²
Ba	Sic		6 X (Am	pl	2:		G	=	G	Ln	(2)	ope	-	Ma	th		()	~	A	
														ope	n		7					
																/}	n ²	+1				
														clos	>	//-	1					
											d	1		ادست			7	1				
	1		à	,							ð						7)	de	et g	L)		
Fa	ct	•	b	la	lg	. 0	m	up	G)			(Aln	(k)							
					0	' (up			clo	sed										
														nea		~ O~		2 40	v.M			
						, 0	}•	3 1 (y ugo	7			4	riea	<u> </u>	wg	•	316	ررس			

Homomorphism ef	alg. groups =	group homomorphism
		+ morphism et alg. vass.
Representation =		
(Tational)	of alg. van	rism $G \longrightarrow GL(V)$ rieties
Alg. group action	GNX	group action s.t.
		$G \times X \longrightarrow X$ is morphism
		$(g, x) \mapsto g \cdot x$
Thm. YxeX:	orbit G·x	= X loc. closed Subvers.
S4	abilizer Gx	= G closed subgroup
(V)		open in closed
	Z = G	• oc <
		is open in Z

Example:
$$Gl_3 \Omega P (Sym_3(R)) = IP^5$$

Orbits: $rk q = 3$
 $rk q = 2$
 $rk q = 1$
 O_1
 $O_2 = O_2 \cup O_1$
 $O_3 = IP^5$
 $O_3 = IP^5$

Geometric quotient $Y = X/G \leftarrow X$ 1 · Vy∈ Y: JT (y) = single G-orbit • U open in $Y \iff \pi^{-1}(U)$ open in X• $f \in O_Y(U) \iff \pi^* f \in O_X(\pi^{-1}(U))$ does not always exist Thm. H C G closed subgrp. Then: • ∃ geom. quet. Y = G/H for H D G, g → g·h¹
right \Rightarrow \exists rep. $G(V) \forall v \text{ s.t. } H = G_{v}, \quad Y \cong G(v) \subseteq P(v)$ · G Q X transitive, H=G => X = Y Chevalley's Hhm.





