Spherical varieties: Lecture 3

Recall: G alg. grp. $H \subset G$ closed subgrp. Y = G/H $H \cap V$ ein. rep. $\longrightarrow E = G \times^H V \xrightarrow{\pi} Y$ $Ind G(V) := H^o(Y, E)$ $\simeq (k E G I \otimes V)^H$ $E \times ercise 1: H \cap V \text{ comes from } G \cap V$ $\Rightarrow E \simeq Y \times V$

$$IndG(V) = \& [G/H] \otimes V$$

Exercise 2: $\left[\operatorname{Ind}_{H}(V)\right]^{G} \simeq V^{H}$

Frobenius reciprocity:
$$Hom_{G}(W, Ind_{H}G(V)) \simeq Hom_{H}(Res_{H}G(V))$$

Proof: $\varphi: W \longrightarrow Ind_{H}G(V) = H^{\circ}(Y, E)$
 $\psi: W \longrightarrow V$
 $\psi: W \longrightarrow V$
 $\chi = g^{\circ}(X) = V$

Recover S from $V: g^{\circ}(S) = (g^{\circ}(S))(X) = (g^{\circ}(S))(X)$

Particular case: 1-dim rep. $H \cap k_{\chi} \longleftrightarrow homogen.$ line Bundle $\chi: H \longrightarrow k^{\times}$ character $\chi = \mathcal{L} = G \times^{H} k_{\chi}$ $h \cdot \not\equiv \chi(h) \cdot \not\equiv$ Ind G(kx) = H°(G/H, dx) = (k[G] \otimes kx) = $= k[G]_{\chi}^{(H)} := \{ f \in k[G] \mid f(g \cdot h) = \chi(h) \cdot f(g), \forall g \in G, h \in H \}$ Notation: $H(\mathcal{V})$ lin. rep.

eigenvector of weight χ , semi-invariant vector χ : = $\{v \in V \mid h \cdot v = \chi(h) \cdot v, \forall h \in H\}$ eigenspace of weight χ ,

weight subspace

rucu		ve	gra	ps									
Def.	Al	g. (group	G	55	rea	ductiv	e if	all	its red	reps ue; Rla	. ar	misimalo
Examp	rles	•	1)	F	ini	te	group	55		X/e Com	shall	Co	nsides
			3)	Alg	. t	ori	G, G	- = k	orients	Yn × &×		enj	
2), 3)	+	Sp	inn	G_2 , F	-47	Ξ6,	E7, E	8 ~	roducts otients/c	~>	all	con	neetal
									Ce S	ntra	ps.	.	
									redu				

Important	tsubg	roups	•				
G =	B	Borel	subgrou	p =	mex.	Connected sub	d solvable Byrp.
	U		uni pot				
			i.e.	SC>	. Gln	consists matrices	ef unipotent (w. all ues = 1)
	7	max	torus			eig on val	ues = 1)
B = U							
Β, υ, Τ			to conj.	in G			
Basic exam	ce:	G =	GLn,	B=	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, U	= 11/11,
						T	= *.0

Representations et red groups Thm. Let GQV in rep. Then: • I unique B-stable line k.v ⊂ V $6 \cdot v = \lambda(8) \cdot v$, $\lambda : B \rightarrow k^{\times}$ highest weight • G(χ) = $V(\chi)$ uniquely determined by χ Weight lattice $\Lambda(B) = \{\lambda : B \xrightarrow{hom.} k^*\}$ $\lambda |_{U} = 1$ ≃ ∧(T) $T \simeq k^{\times} \times \dots \times k^{\times} \Rightarrow \Lambda(T) \simeq \mathbb{Z}^{n}$ Write $\lambda(t) = t_1 \cdots t_n = :t^{\lambda}$ $e_i \in \mathbb{Z}$ characters additively · he N(T) ht. wt. of some in rep. (=> he A(T) nct ctent) dominant cone called N(t) C+ weights positive Weyl chamber 0

Example:
$$G = GL_n$$
 $V = \Lambda^k k^n \ni v = e_1 \dots n e_k$
 $t = \begin{pmatrix} t_1 & 0 \\ 0 & t_n \end{pmatrix} \in T \implies t \cdot v = t_1 \cdot \dots \cdot t_k \cdot v$
 $ht. wt. \quad \lambda = \varepsilon_1 + \dots + \varepsilon_k, \quad \varepsilon_i(t) = t_i$

$$C^{+} = \{ \lambda = \{\epsilon_{1} + ... + \ell_{n} \epsilon_{n} \mid \epsilon_{n} \geq \epsilon_{2} \geq ... \geq \epsilon_{n} \}$$

Geometric realization et irr. reps. X = G/B (gen.) fleg variety $G = GL(V) \Rightarrow X = Fe(V) = \{V_{\bullet} = (o = V_{\bullet} \subset V_{\bullet} \subset V_{\bullet} \subset V_{\bullet} = V) \mid$ $dim V_k = k$ X is proj. var. $\lambda \in \Lambda(T) = \Lambda(B) \longrightarrow \mathcal{L}_{-\lambda} = \mathbb{C} \times^{B} k_{-\lambda}$ Borel - Weil thm. $H^{\circ}(G/B, \mathcal{L}_{-\lambda}) = \{0, \lambda \notin C^{+}\}$ $\lambda \mapsto \lambda^{*} \mathbb{Z}$ -lin. involution on $\Lambda(T)$ $V(\lambda)^{*} = V(\lambda^{*}), \lambda \in C^{+}$ Proof: Hom (V(M), Ind (k)) = Hom (V(M), k) \simeq Hom $(k_{\lambda}, V(y^*)) = \{ k, \lambda = y^* \}$ This means that \exists unique i.r. G-submodule in $IhdG(k_{-\lambda})$ namely $V(\lambda^*)$.