Spherical varieties: Lecture 5

quasiaff. var.

Recall: Hom. Space Y = G/H is spherical if any et equivalent properties holds: (1) B DY w. open orbit Lie alg. of glg-1) (2) IgeG: to + Alg) = of (3) I Borel B = G: b + g = of $(4) \quad k(Y)^{b} = k$ (5) Vhomogen. line bundle & -> Y: G (Y, L) mult. free (6) $\forall \mu \in \Lambda(T) \cap C^{+} \forall \chi \in \Lambda(H): \dim V(\mu)_{\chi}^{(H)} \leq 1$ if \((7) G \(\alpha\) \(\kappa\) \(\ka

Examples:

1) Sphere
$$S^{n-1} = \{x \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 = 1\} = SO_n / SO_{n-1}$$

Change coordinates in \mathbb{R}^n s.t. SO_n preserves quad. form

w. matrix $q = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

$$G = SOn$$
: $g \cdot q \cdot g^{T} = q$, $det g = 1$

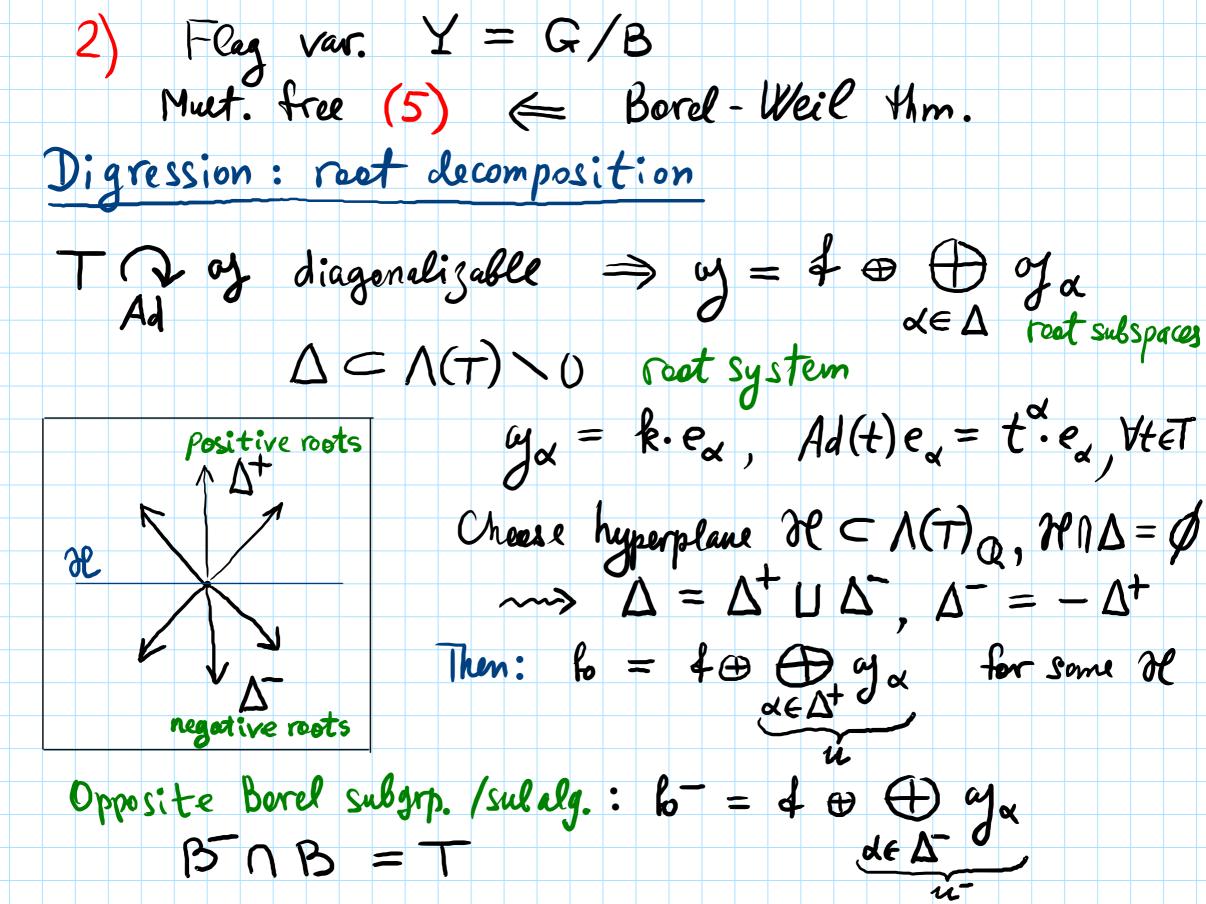
$$G = SG_n : S \cdot 9 + 9 \cdot S^T = 0, trS = 0$$

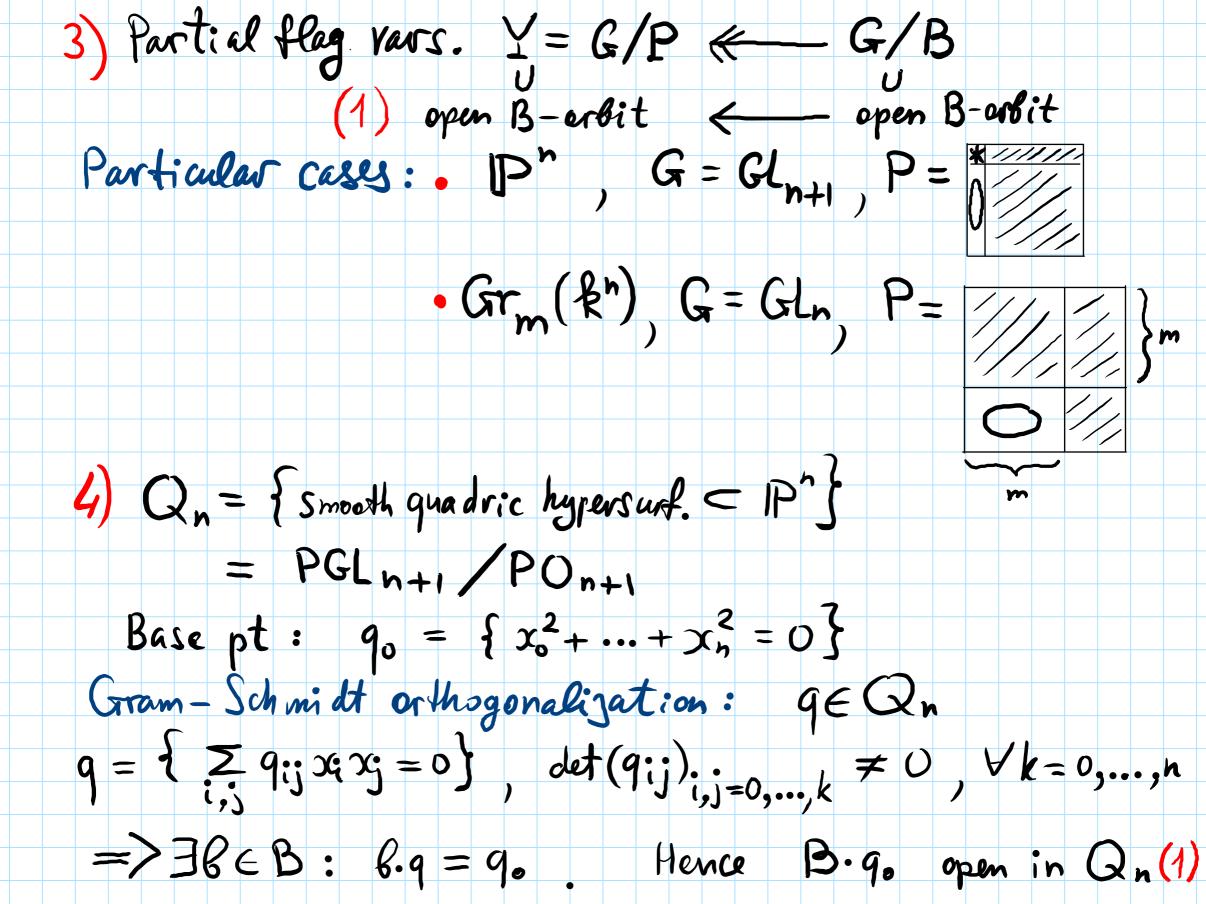
Skes-symm. matrices w. r.t. secondary diagonal

$$H = G_{e_1+e_n} \simeq SO_{n-1} \implies f = \{ \xi \in \mathcal{G} \mid \xi(e_1+e_n) = 0 \} = v + -v$$

$$\Rightarrow b + b = of (2)$$

Names: Sphenical hem. space M. Brion, D. Luna, Th. Vust 1986 Spherical subgroup (for H) M. Krämer / 1979 muet. free condition E.B. Vinberg, B.N. Kimelfeld 1978





```
5) GY = G \simeq (G \times G) / diag(G)
G×G
left/right mult. Borel subgrp.: B×B ⊂ G×G
          (B^T \times B)e = B^T \cdot B open in G (1)
 Exercise 2: Are spherical? Y=G/H
  (a) Gl2 × Gl2 × Gl2 / diag (Gl2)
 (B) Gl3 × Gl3 × Gl3 / diag (Gl3)
  (c) Gl2 × Gl2 × Gl2 × Gl2 / drag (Gl2)
Exercise 3: HCG connected red. Subgrp.
  Prove: G×H/diag(H) spherical (=>)
(MFR) Virr. rep. G. QV: Res G (V) muet. free
Exercise 4: Does (MFR) held for:
 (a) GL_n \Rightarrow GL_{n-1}; (b) SO_n \Rightarrow SO_{n-1}; (c) Sp_{2n} \Rightarrow Sp_{2n-2}?
```

Def. HCG Symmetric Subgrp. if $\exists \theta \in Aut(G), \theta^2 = id, \theta \neq id$ s.t. $H^\circ = (G^\theta)^\circ$ θ alg. group automorphism identity component:= connected component of H Equivalently: $h = oy\theta$ 2) $Q_n = PGL_{n+1}/PO_{n+1}$, $\theta(g) = (gT)^{-1}$ 3) $G = (G \times G)/diag(G)$, $\theta(g_1,g_2) = (g_2,g_1)$ Thm. Symmetric spaces are spherical Proof of 4thm: Suppose $H \subset G$ symm. subgrp. $\Rightarrow y = g\theta \oplus g\theta$, $y = \theta$ -eigenspaces of eigenvalue ± 1 Lemma! Y Borel subgrp. B ⊂ G = 3 0-stable max. torus Proof: $\theta(B) \subset G$ another Bovel subgrp. R = BN θ(B) θ-stable solvable connected
[Humphreys. L.A.G., 28.3, Cor.] Bruhat decomposition $R = S \times N$ $\Theta(N) = N$ towas unipotent = sot et all unipotent elts. $\theta(S) = n \cdot S \cdot n^{-1}, n \in \mathbb{N}$ $S = \theta(n) \cdot \theta(S) \cdot \theta(n)^{-1} = \theta(n) \cdot n \cdot S \cdot n^{-1} \cdot \theta(n)^{-1}$

exp:
$$\partial t \longrightarrow N$$
, $\exp(\tilde{s}) = e + \tilde{s} + \frac{\tilde{s}^2}{2} + ... + \frac{\tilde{s}^k}{k!} + ...$
 $n = \exp(\tilde{s})$, $\theta(n) = n^{-1} \implies \theta(\tilde{s}) = -\tilde{s}$

Put $n^{1/2} := \exp(\tilde{s}/2)$, $T = n^{1/2} \cdot S \cdot n^{-1/2}$
 $\Rightarrow \theta(T) = \theta(n^{1/2}) \cdot \theta(S) \cdot \theta(n^{-1/2})$
 $= n^{-1/2} \cdot n \cdot S \cdot n^{-1} \cdot n^{1/2} = T$