Spherical varieties: Lecture 6

Symmetric \Rightarrow spherical Notation: $H \subset G$, $H^{\circ} = (G^{\theta})^{\circ}$, $\theta \in Aut(G)$, $\theta^{2} = id$ Lemma 1. \forall Borel subgroup $B \subset G$ $\exists \theta$ -Stable max. torus $T \subset B$ $d = d \oplus d$ Lemma 2. 30-stable mex. toras TCG s.t. 4-40 Preof: Otherwise: \Borel BCG, B = T, Off = id $\Rightarrow \theta (\lambda \Lambda(T) \Rightarrow \Delta \Rightarrow \theta(g_{\alpha}) = g_{\alpha}, \forall \alpha \in \Delta$ trivial $\Rightarrow \theta(b) = b \Rightarrow \theta(B) = B$ Hence: Ymax.toras T'CG, T=BNBT O-stable $UT' \text{ dense in } G \Rightarrow \theta = id.$ Contradiction

Choose θ -stable max. torus $T \subset G$ s.t. $dim f^{-\theta}$ is max. possible Lemma 3. $\alpha \in \Delta$, $\theta(\alpha) = \alpha \implies \phi(\alpha) = \alpha \Rightarrow \phi(\alpha) = \alpha \Rightarrow \phi(\alpha) \Rightarrow \phi(\alpha)$ $\theta(\alpha) = \alpha \iff \alpha = 0 \quad \text{if } \eta = \alpha(s) \cdot \eta$ centralizer $1 := 3 \quad (4^{-\theta}) = 4 \oplus 0 \quad \text{of } \alpha = 3(1) \oplus [1,1]$ reductive [Humphreys] $\theta(\alpha) = \alpha \quad \eta \quad \text{venter semisimple}$ $\Gamma(1,1) = 0 \quad \text{of } \alpha = 3(1) \oplus [1,1]$ $\Gamma(1,1) = 0 \quad \text{of } \alpha = 3(1) \oplus [1,1]$ If θ [1,1] \neq id, then $\exists \theta$ -stable max. torus $S \subset [L,L]$ T \longrightarrow T' = Z(L). S , $(4')^{-\theta} = 4^{-\theta} \oplus s^{-\theta}$ Contradiction dim > dim (4-\theta) Contradiction.

End ef preaf of Thm:



Choose $\mathcal{H} \subset \Lambda(T)_{\mathbb{Q}}$ s.t. $\mathcal{H} \cap \Delta = \emptyset$ and: $\beta \in \Delta^{\pm}$, $\beta \neq \theta(\beta) \Rightarrow \theta(\beta) \in \Delta^{\mp}$

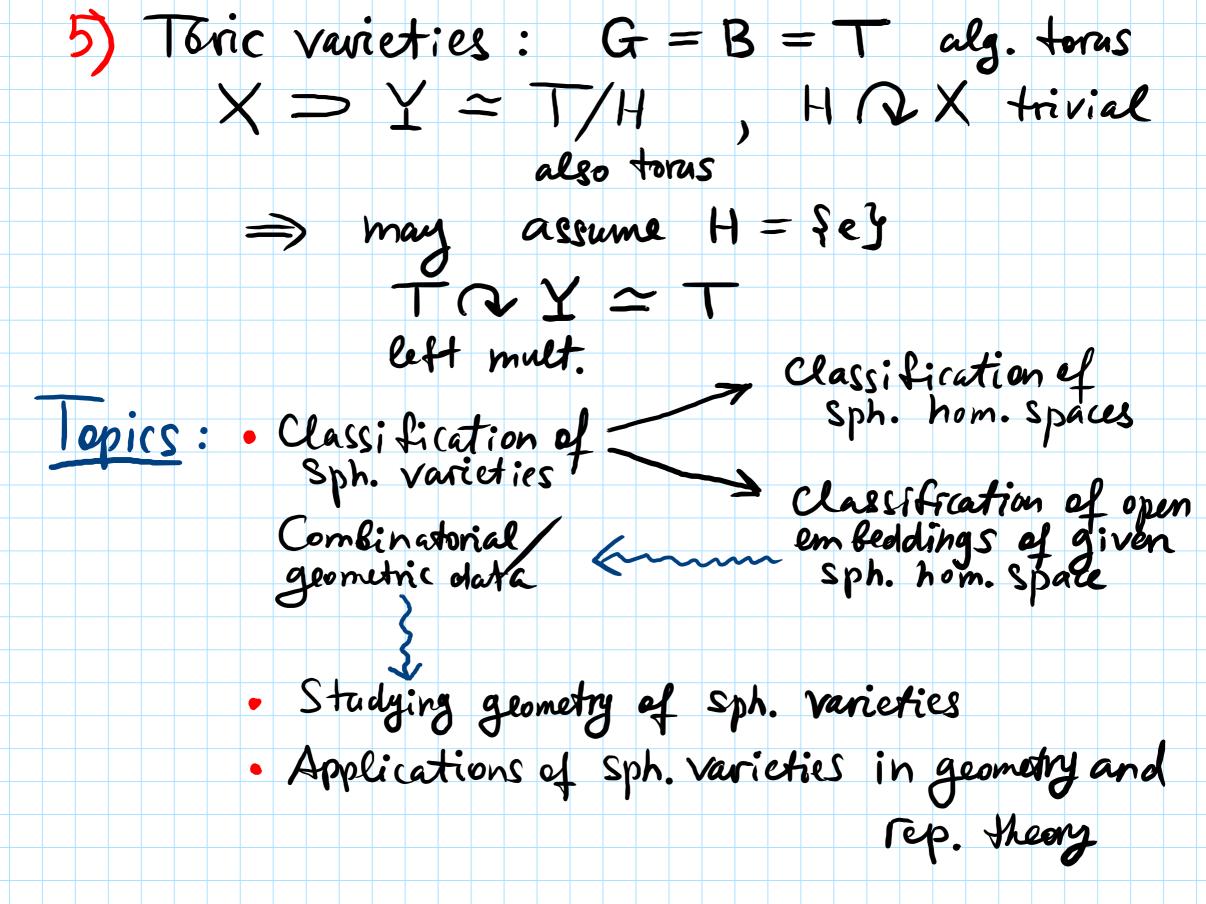
Exercise 1: V = kⁿ Vector space w. non-degenerate
quad. form q $G = SO(V, 9) \simeq So'_n(k)$ Y = { UCV | dim U=m, 9 | 5 non-deg.} C G(V) Prove: Y symm. space for Gr Exercise 2: $V = \mathbb{R}^{2n}$ symplectic vector space $G = \operatorname{Sp}(V) \cong \operatorname{Sp}_{2n}(\mathbb{R})$ $Y = \{(V_1, V_2) \mid V_1 \subset V \text{ Lagrangian }, V_1 \oplus V_2 = V\}$ Prove: Y symm. space for G

	5	ph	eri	cal	V	an	et i	es										
		G	Co	nne	eted	re	d.	alg.	917)	Y	′ ≃	G	/H	hor	n. S	pac	٤
Do	f.		Eq	uiv	ari	ant	op	en (emb	edd;	ng:	G	7	J×		> }	-	loss
																		t
			Sp	, ha	n co	J.	Vari	et	:=	= (per	n e	em b	eddj	ng	of	a	
			•								Sph.	h	om.	g	ace			
ł	<u> </u>	iV	alei	ntle	1:	S	phe	rical	l Va	sie	ty	=	in	- al	g. V	arie	ty	X
												_		ac				
										S.	†.	B	J.	X	w.	2pen	ort	3it
Ē	=X	on	npl	es	•	1) 3	3 n -	=	SO,	1/5	50 _{n.}	-1 <	=)	X = gui	{ x ₀ +	χ ₊ .	+x	2 n=0
														med qu	h projection) •		P' (n+3)
	2)	C) n		be	Lni	1/6) A		>	(=	F)(Sym	n+1)	2	P	2
		VW	r. 0	+ Sm	100A	ر مر	nadri	cs .	-1	V	as.	of i	ull	igna	. qua	dnics	1	

4) Determinantal varieties:

$$X_{\Gamma} = \{x = (x_{ij}) \mid rkx \leq r\} \subset Mat_{m\times n}$$

$$B = 0$$



Digression: singularities et alg. varieties X alg. vaniely /k, $x \in X$ Local ring $O = O = \lim_{x \to x} O(U)$ $V = V = \lim_{x \to x} O(U)$ Zaniski tangent space: $T_x X := (m_x/m_x^2)^*$ $\xi \in T_{x}X$, $f \in O_{x} \longrightarrow \langle f - f(x) \mod m_{x}^{2}, \xi \rangle = \partial f_{x}$ derivative of fat x in $d_{x}f(\xi)$ direction 5

 $\dim T_{x} X \ge \dim X := \max_{x} \dim X_{i}$ $X_{i} \ni x \qquad \uparrow$ irr. components of X $\dim X_i = \operatorname{tr.deg.} k(X_i)/R$ x Smooth pt. if $dim T_x X = dim X$ (regular) Singular pt. if dim TxX > dim X Smooth locus $X^{reg} \subset X$ open, dense Singular locus $X^{sing} = X \setminus X^{reg}$ closed, smaller dim $\Rightarrow X \in \Lambda X \in Y$