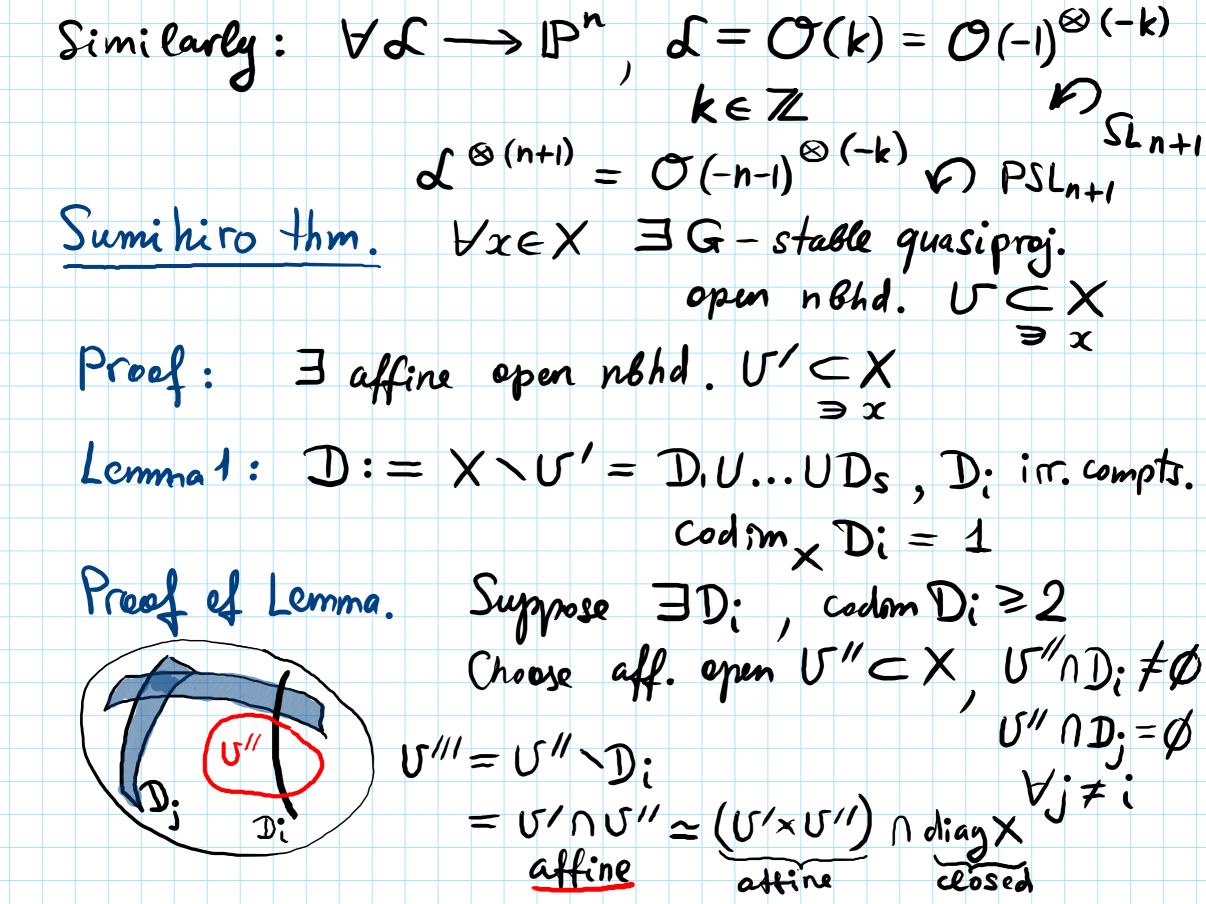
	S	ph	er	ica	al '	va	rie	etic	es	: [_e	ct	ur	e i	7_											_
	D	ef.		Ir		al	J • '	Yay	rie	ty	_ >	<	is		no	rm	al		if	•						_
			•		Coo	lim	>	< 5	ng	>	2															_
			•	1	√ c	pe	n	U		X	b	/ f	`€	k	(X):	: {	`∈	0	-(U		Z),	Cod	im L	7 > 2)
		5 n	06	A	h			h			0							=)	> f	? (C	YU	Γ)			_
		ac						_							A	~~		7								_
						[X																				_
											灭														0	_
		f	E	k ()	()	4	m.	+ 0	۶۰.	tu	1-1	+.	••	+ 0]m	=	0	gi	ϵ	& Cx			> -	₽€	k(x) X	
N	01	nal	130	ti	on		X i	irr.	Va	C.	=>	> :	3	uni	que	n	on C	al	X	W.	V): >	\ –	\rightarrow	X	_
						~										ν	ti	nit	e (pa	per	fi.	fini bers	te) [<)	_
•	X	aff	me		>	X	af	fin	Q								Bi	rat	ion							
	RΓ	\hat{X}] =	5	R	[X		=	{-	fe	k	?(×	3) 5	sæti	: 26	Pai 1	ng	(米)	}		י־ע	(V)	-		·U	_
																	T									

Spher	ical	Vario	ty:	=	horm	al	spken	ical	Vasi	efy	
Sepa	ation	n prof.	perty	: >	<×>	(=	> di	ag(X) c	losea	
Ala											
G-6											
G	Conne	eted o	elg.	chonk		not	nec	ssa	rily	reduct	tive)
Thm.	nom	isoay	nu (vano	yy →G	\tag{2}	(e; v	e Beer	do	$\Gamma \longrightarrow Y$
						av	tion	G(X	eif	<i>t</i> 2 4ο Γ→Χ
	20	uj. ho	momo ite f	nphssn ibers		£,	beru	ise	Cinea	ract	ion
eferer	ce:								anj		ef L
Knog	, H.I	Kraft	, D. L	una,	Th. Vo	ist.	Lo	cal y	proper	ties e	falg.
gra	4 ad	tions	C .	MV	Sem	ina	-, V	2l. 1	3,	1989.	





5" = 5" ~~> k[5"] = k[5"] f regular outside DiNV" $cedom(D: NV'') \ge 2$ Hence: $R[U''] = R[U''] \implies U'' = U''$ Contradiction. Digression: clivisors and line bundles X normal variety Prime divisor = irr. closed subvar. DCX, codimD=1 (Weil) divisor = formal Z-linear combination Effective divisor: $S = k_1 \cdot D_1 + ... + k_s \cdot D_s$ $8 \ge 0$ if $k_1, ..., k_s \ge 0$ $k_i \in \mathbb{Z}$. Di prime divisors

Claim: Dn X reg 7 $\forall x \in D \cap X^{reg} \exists aff. open nbhd. <math>U \subseteq X s.t.$ $\forall f \in k(x) \exists k \in \mathbb{Z} : f = t_D^k \cdot g, g \in O_{x,x}, g|_{D} \neq 0$ k = ord (f) vanishing order of f along D k>0: f has zero along D K<0: f has pele along D Prinipal divisor: $div(f) = \sum_{D \in X} ord_D(f) \cdot D$ $= div_o(f) - div_\infty(f)$ $f \in O(x) \iff div_{\infty}(f) = 0$ divisor of zeroes divisor of poles

Cartier divisor = divisor & s.t. VxeX Fopen nobled. U=X s.t. SNU principal X smooth => V divisor is Cartier Suppose: L-> X line bundle $3 \in H^{\circ}(U, \mathcal{L}), U \subset X$ open X = U U; $\alpha = U : x k^1$ $\alpha = U : x k^1$ $3|_{\mathcal{U}_i} \longleftrightarrow f_i \in k(\mathcal{U}_i) = k(x)$ $f_i/f_j \in \mathcal{O}(v_i n v_j)^*$ $\operatorname{ord}_{\mathbb{D}}(s) := \operatorname{ord}_{\mathbb{D}}(f_i) \text{ if } \mathbb{D} \cap \mathcal{U}_i \neq \emptyset$ does not depend on i $div(s) = \sum_{D} ord_{D}(s) \cdot D$ Contier 3 ∈ H° (X, L) (3) ≥ 0

Conversely:
$$S$$
 Cartier $\Rightarrow \exists (\mathcal{L}, \Delta)$ s.t. $div(\Delta) = S$

unique up
to isomorphism

 $\mathcal{L} = \mathcal{O}_X(S) = \mathcal{O}(S)$
 $\Rightarrow \exists S$
 $\Rightarrow \exists$