Spherical varieties: Lecture 8

$$\mathcal{L} = \mathcal{O}_{\times}(S), \quad M \subset H^{\circ}(X, \mathcal{L})$$

$$\dim(\infty)$$

$$\varphi : \times --- \Rightarrow P(M^{*})$$

$$x \longmapsto M(x) = \{s \in M \mid J(x) = 0\}$$

$$Claim 1 : \quad \text{If } \mathcal{L} \text{ globally generated } : \forall x \in X \exists s \in H^{\circ}(X, \mathcal{L}) : s(x) \neq 0$$

$$\text{Hen } \exists M \subset H^{\circ}(X, \mathcal{L}) \text{ s.t. } \varphi : X \longrightarrow P(M^{*}) \text{ morphism }$$

$$\dim(\infty)$$

$$Claim 2 : \quad \forall \text{ morphism } \varphi : X \longrightarrow P^{\circ} \text{ cames from } \mathcal{L} = \varphi^{*}\mathcal{O}(1)$$

$$M = \varphi^{*} H^{\circ}(P^{\circ}, \mathcal{O}(1))$$

$$S \text{ very ample } \text{ if } \varphi : X \hookrightarrow P^{\circ} \text{ for some } M \subset H^{\circ}(X, \mathcal{O}(S))$$

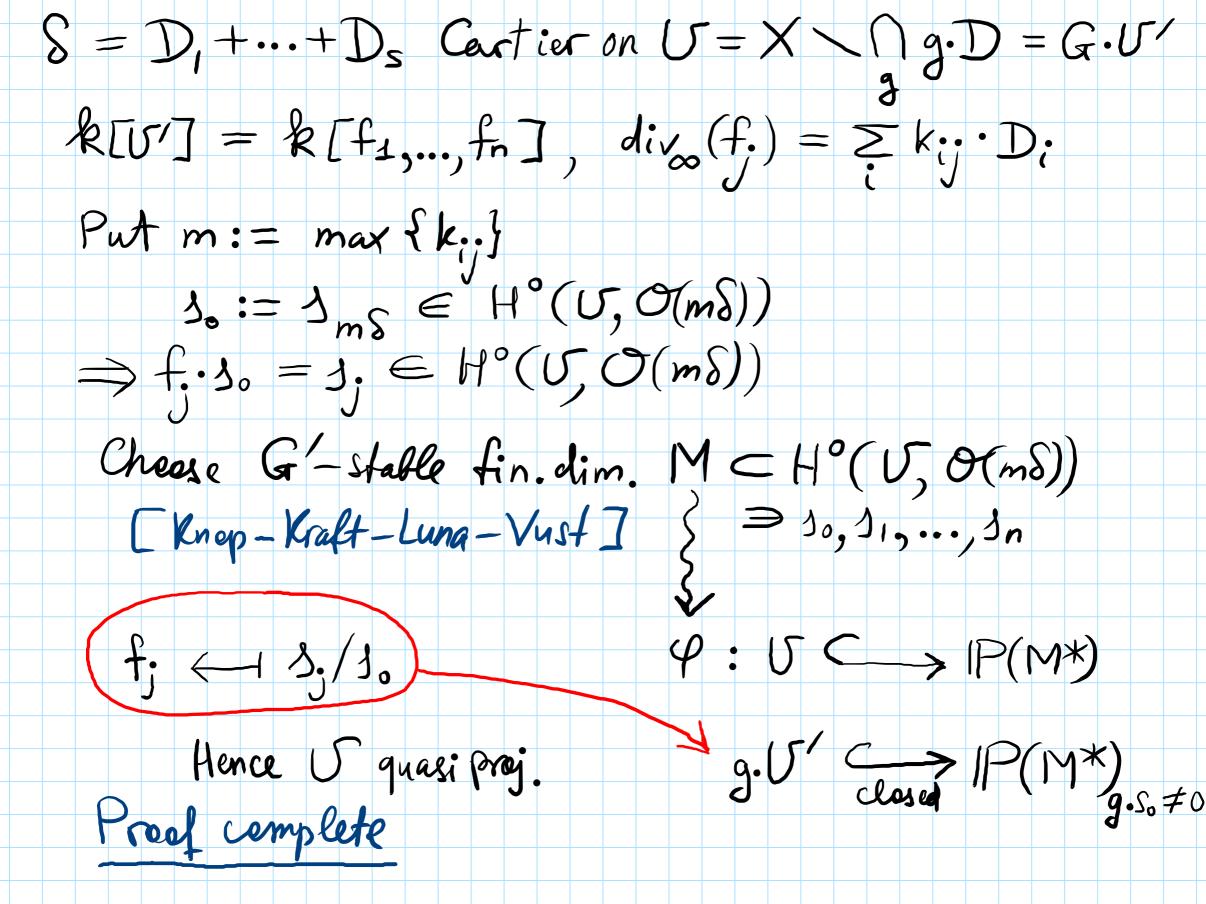
$$\text{ample } \text{ if } \exists m \in \mathbb{N} \text{ s.t. } m.S \text{ very ample }$$

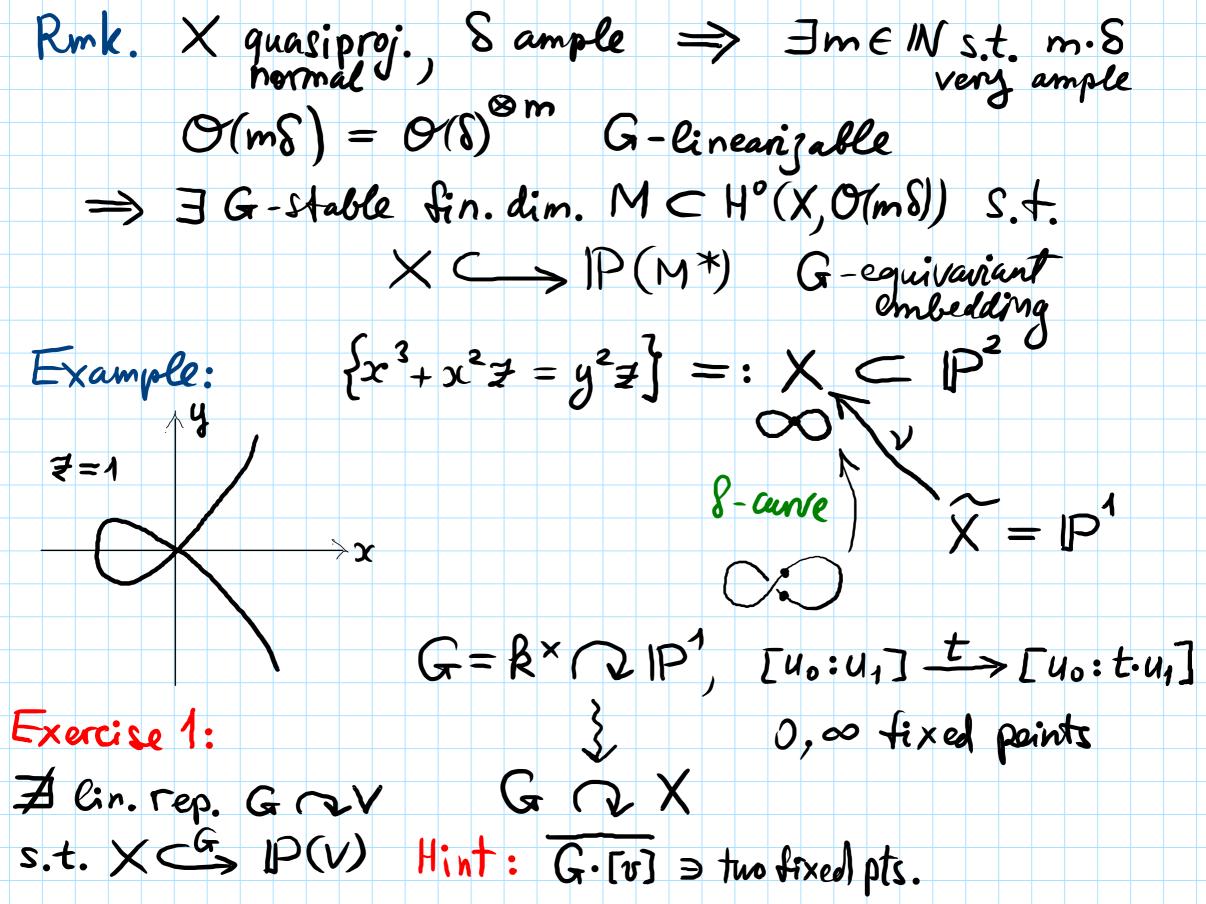
$$\mathcal{L} \longrightarrow \mathcal{L} \otimes m$$

 $\mathcal{L} \sim \mathcal{L} \otimes m$

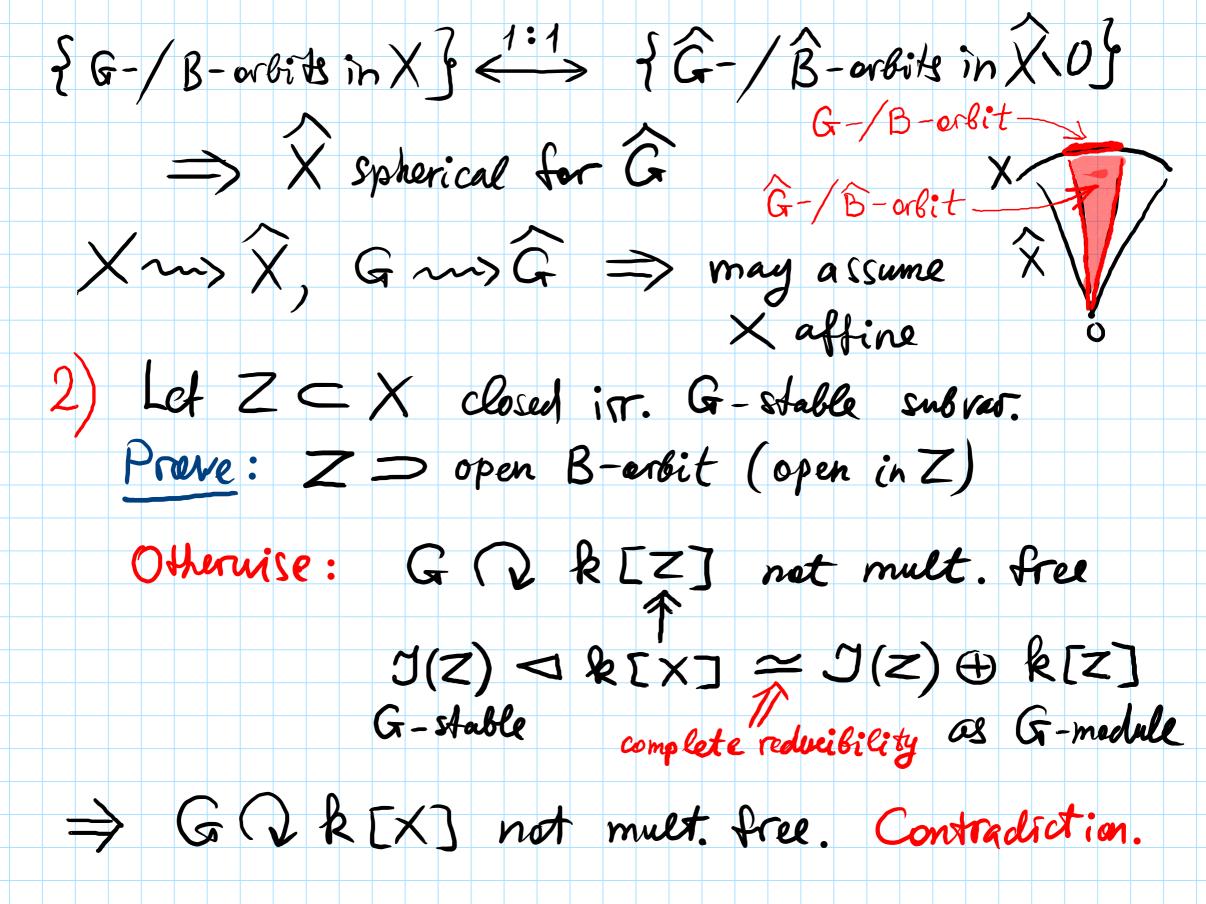
Back to	proof of	Sumihire	Him.			
G	J X	Want	to Rino	G-stab	le quasiprey	. open
Confi.	norm.		nond.	$V \subset X$		
X>	$U' \ni x$		U'= J	$\mathcal{D} = \mathcal{D}, \mathcal{U}$	UD_s	
o o	pen ffine			prime	divisors	
Lemma 2	J; C	uties o	n X \	NgD;		
Proof:	May assur	ne ng	$D_i = \ell$	jeur		
1); Cartie	er on X	reg ~	> L ^{reg} =	Ox reg(Di	1Xreg)
				seH° divs=	Din X reg	
GQ	$\mathcal{L}_{ig} \Rightarrow$	div(g.3	$)=g\widehat{1}$); 1 X reg		Ga
		of Lea	rivial	on Xieg	$\searrow g U_i =$: Ugg

Siegluses - Useg x R1 - (Useg n Useg) x R1 $\mathcal{L}_{h}^{reg} \simeq \mathcal{L}_{h}^{reg} \times \mathbb{R}^{1} \Rightarrow (\mathcal{L}_{g}^{reg}) \mathcal{L}_{h}^{reg}) \times \mathbb{R}^{1} \xrightarrow{\text{transition}} \mathcal{L}_{h}^{reg}$ $X = \bigcup_{g} \bigcup_{g} \bigcup_{g} = X \setminus g D_{i}$ Normality \Rightarrow fgh extends over Ug \cap Uh $\in \mathcal{O}(U_g \cap U_h)^{\times}$ => L reg extends to L -> X s extends over X On $X: div(S) = D_i$





Fin	iter	rea	thm	2.								
G					X	spl	nica	l G	- Vas.	•		
Thm.											h erb	it
(Serve	dio'	973	Luna	-Vus	F 1 15	383)		5		s a s	sph. non	n. Space
Proo	d :	1) Su	mihir	o th	n . =	>	X	= [JX			
							\times_i	G-5	Aable	open	gnasi	proj.
Ma	y as	Sune	XC	- CAVI	> 11)(N)	G	a	V	lin.r	eρ.
×	< ~~·	X		⇒	may	ass	ume	X		P(ein.r	
								(2-1	table	prog	. Subr	or.
AR	i niza	tion:	Ŷ	C	V	aff.	Con	e ov	rer >			
			Ĝ	= (x R	R× ^	9	B =	B>	< R ×	Borel sul	3 gmp.
						La	cts (sy 50	calas	mul	<i>t</i> ,	



Induction en drm X: X => Yo open G-orbit X>Yo = ZIU...UZm Closed : rr. cempts. Zi closed in G-subvar. dim Zi < dim X=> Zi Spherical for G => GQZ: has fin. many orbits ⇒ G Q X also. 3) YCX G-orbit => Z = Y spherical => Y spherical