ЛЕКЦИЯ 9. АВТОМОРФИЗМЫ И ЦЕНТРЫ ПРОСТЫХ КОМПАКТНЫХ ГРУПП ЛИ.

Следующие задачи эквивалентны:

- (31) классификация некомпактных неприводимых полупростых симметрических алгебр Ли;
- (32) классификация компактных неприводимых полупростых симметрических алгебр Ли;
- (33) классификация некомпактных простых вещественных алгебр Ли;
- (34) классификация инволютивных автоморфизмов компактных простых вещественных алгебр Ли;
- (35) классификация инволютивных автоморфизмов простых комплексных алгебр Ли.

Задачи (31) и (32) эквивалентны в силу двойственности.

Эквивалентность (32) и (33) следует из существования инволюции Картана у любой некомпактной простой вещественной алгебры Ли и сопряженности максимальных компактных подалгебр.

Эквивалентность (32) и (34) имеет место по определению компактных неприводимых полупростых симметрических алгебр Ли.

Наконец, эквивалентность (34) и (35) устанавливается следующим предложением.

Предложение 1. Пусть G — связная простая комплексная группа Ли и $\mathfrak{g} = \mathrm{Lie}(G)$. Тогда

- 1) всякий инволютивный автоморфизм σ алгебры \mathfrak{g} сохраняет некоторую ее компактную вещественную форму \mathfrak{k} ;
- 2) если инволютивные автоморфизмы σ и σ' алгебры \mathfrak{g} , сохраняющие одну и ту же компактную вещественную форму \mathfrak{k} , сопряжены при помощи внутреннего автоморфизма алгебры \mathfrak{g} , то они сопряжены при помощи автоморфизма вида $\mathrm{Ad}(k), \ k \in K$, где $K \subset G$ связная подгруппа Ли с касательной алгеброй \mathfrak{k} .

Доказательство. 1) Автоморфизм σ естественным образом действует в симметрическом пространстве X компактных вещественных форм алгебры \mathfrak{g} . Это действие нормализует действие группы G и, следовательно, сохраняет G-инвариантную риманову метрику. Поэтому σ имеет неподвижную точку в X, т.е. сохраняет некоторую компактную вещественную форму.

2) Пусть $\sigma' = \operatorname{Ad}(g)\sigma(\operatorname{Ad}(g))^{-1}$ для некоторого $g \in G$. В терминах группы движений пространства X = G/K это означает, что $\sigma' = g\sigma g^{-1}$. Обозначим через o базисную точку пространства X (соответствующую самой подгруппе K). Тогда σ' сохраняет точки o и go и, значит, — все точки геодезической γ , соединяющей o и go. Следовательно, σ' коммутирует с параллельными сдвигами вдоль γ . Элемент g можно представить в виде произведения подходящего параллельного сдвига вдоль γ и какого-то элемента $k \in K$ (полярное разложение). Так как первый множитель этого разложения коммутирует с σ' , то $\sigma' = k\sigma k^{-1}$. В терминах автоморфизмов алгебры \mathfrak{g} это означает, что $\sigma' = \operatorname{Ad}(k)\sigma(\operatorname{Ad}(k))^{-1}$, что и требовалось доказать.

Решение задач (34) и (35) разбивается на два случая в зависимости от того, является ли автоморфизм σ внутренним или внешним. Эрмитовы симметрические пространства относятся к первому случаю, так как для них $\sigma = \operatorname{Ad}(\exp \pi z_0)$ (в обозначениях лекции 7).

Для решения этих задач необходима некоторая подготовка.

Пусть G — односвязная простая компактная группа Ли, Z = Z(G) — ее центр и $\mathfrak{g} = \mathrm{Lie}(G)$. Фиксируем в группе G некоторый максимальный тор T. Известно, что всякий элемент группы G сопряжен элементу из T (в частности, $Z \subset T$) и что два элемента из T сопряжены в G тогда и только тогда, когда они переводятся друг в друга преобразованиями из группы Вейля W.

Положим $\mathfrak{t}=\mathrm{Lie}(T)$; тогда $\mathfrak{t}+i\mathfrak{t}$ — картановская подалгебра алгебры $\mathfrak{g}\otimes\mathbb{C}$. Пусть Δ — система корней алгебры $\mathfrak{g}\otimes\mathbb{C}$ относительно этой картановской подалгебры. Заметим, что все корни принимают вещественные значения на $i\mathfrak{t}$. Мы будем рассматривать векторное пространство $i\mathfrak{t}=\mathbf{E}$ как евклидово пространство относительно формы Киллинга, а корни и веса алгебры $\mathfrak{g}\otimes\mathbb{C}$ — как элементы сопряженного пространства \mathbf{E}^* .

Фиксируем систему простых корней

$$\Pi = \{\alpha_1, \dots, \alpha_n\} \subset \Delta$$

алгебры $\mathfrak{g} \otimes \mathbb{C}$. Каждое ортогональное преобразование пространства \mathbf{E} , сохраняющее систему Π (или, что то же, каждая симметрия схемы простых корней), определяет автоморфизм алгебры $\mathfrak{g} \otimes \mathbb{C}$, соответствующим образом переставляющий канонические образующие e_i, h_i, f_i ($i = 1, \ldots, n$). Такие автоморфизмы называются схемными. Легко видеть, что всякий схемный автоморфизм перестановочен с комплексным сопряжением относительно \mathfrak{g} (см. его явный вид в лекции 5) и, следовательно, сохраняет \mathfrak{g} .

Заметим, что группа Sym Π схемных автоморфизмов нетривиальна только для простых алгебр Π и типов A_n ($n \ge 2$), D_n ($n \ge 4$) и E_6 , причем во всех случаях, кроме D_4 , она имеет порядок 2, а для D_4 — порядок 6. (Впрочем, это исключение не имеет существенного значения для нашей задачи, так как нас интересуют только автоморфизмы порядка 2.)

Из того, что группа Вейля W действует просто транзитивно на множестве своих камер (или, что эквивалентно, на множестве всех систем простых корней относительно тора T), следует, что ее нормализатор N(W) в группе ортогональных преобразований пространства ${\bf E}$ имеет вид

$$N(W) = W \times \operatorname{Sym} \Pi. \tag{1}$$

Далее, из сопряженности максимальных торов в группе G следует, что в каждом смежном классе группы $\operatorname{Aut}\mathfrak{g}$ всех автоморфизмов алгебры \mathfrak{g} по (нормальной) подгруппе $\operatorname{Int}\mathfrak{g}$ внутренних автоморфизмов имеется ровно один схемный автоморфизм. Иными словами, имеет место разложение

$$\operatorname{Aut} \mathfrak{g} = \operatorname{Int} \mathfrak{g} \times \operatorname{Sym} \Pi. \tag{2}$$

Введем теперь следующие обозначения:

 $Q \subset \mathbf{E}^*$ — решетка корней;

 $P \subset \mathbf{E}^* \supset Q$ — решетка весов;

 $Q^* = \{x \in \mathbf{E} : \alpha(x) \in \mathbb{Z}$ для всех $\alpha \in Q\}$ — решетка, двойственная к Q;

 $P^* = \{x \in \mathbf{E} : \lambda(x) \in \mathbb{Z} \text{ для всех } \lambda \in P\} \subset Q^* - \text{решетка, двойственная к } P.$

Имеется естественное невырожденное спаривание

$$P/Q \times Q^*/P^* \to \mathbb{R}/\mathbb{Z},$$

из которого следует изоморфизм

$$P/Q \simeq Q^*/P^*$$
.

Каждому корню α сопоставляется кокорень (называемый также дуальным корнем) $\alpha^\vee \in P^*$, ортогональный гиперплоскости $\alpha=0$ и нормированный таким образом, что $\alpha(\alpha^\vee)=2$. (Если отождествить пространства $\mathbf E$ и $\mathbf E^*$ при помощи скалярного умножения, то можно сказать, что $\alpha^\vee=\frac{2\alpha}{(\alpha,\alpha)}$.) Простые кокорни $\alpha_1^\vee,\ldots,\alpha_n^\vee$ составляют базис решетки P^* , дуальный базису решетки P, состоящему из фундаментальных весов. По этой причине решетка P^* называется решеткой кокорней.

Веса алгебры \mathfrak{g} — это не что иное, как дифференциалы одномерных комплексных представлений (характеров) тора T. Таким образом, решетка весов может пониматься как группа характеров тора T. Корни алгебры \mathfrak{g} как веса ее присоединенного представления порождают группу характеров образа тора T, т.е. тора T/Z. Тем самым определен естественный изоморфизм

$$Z \simeq P/Q.$$
 (3)

Решетка кокорней P^* — это ядро экспоненциального отображения

$$\mathbf{E} \to T, \quad x \mapsto \exp 2\pi i x \tag{4}$$

В самом деле, при одномерном представлении тора T с весом λ элемент $\exp 2\pi i x$ переходит в число $e^{2\pi i \lambda(x)}$, равное 1 тогда и только тогда, когда $\lambda(x) \in \mathbb{Z}$, а выполнение этого условия для всех $\lambda \in P$ как раз и означает, что $x \in P^*$.

 $Pacширенной\ группой\ Beйля\ W$ называется группа движений пространства ${f E},$ определяемая по формуле

$$\widetilde{W} = W \wedge P^*, \tag{5}$$

где элементы группы P^* понимаются как параллельные переносы.

Теорема 1. Γ руппа \widetilde{W} является дискретной группой отражений. Ее зеркала — это гиперплоскости, задаваемые уравнениями вида

$$\alpha(x) = k, \quad \alpha \in \Delta, k \in \mathbb{Z},$$
 (6)

а одной из ее камер является симплекс

$$D = \{ x \in \mathbf{E} : \alpha_i(x) \geqslant 0 \ (i = 1, \dots, n), \quad \delta(x) \leqslant 1 \}, \tag{7}$$

 $г \partial e \delta - c map u u u v к o p e h b.$

Доказательство. Так как линейные части всех преобразований из \widetilde{W} принадлежат группе W, то ее зеркалами могут быть только гиперплоскости, параллельные зеркалам группы W. Более точно, всякое отражение $r \in \widetilde{W}$ есть произведение отражения $r_{\alpha} \in W$ относительно гиперплоскости, задаваемой уравнением $\alpha = 0$, где $\alpha \in \Delta$, и параллельного переноса на вектор вида $k\alpha^{\vee}$, $k \in \mathbb{Z}$, что есть отражение относительно гиперплоскости $\alpha(x) = k$. Обратно, всякое такое произведение является отражением и принадлежит группе \widetilde{W} . Следовательно, параллельный перенос на любой кокорень является произведением отражений из группы \widetilde{W} и, значит, эта группа порождается отражениями.

Для доказательства того, что симплекс D является камерой группы \widetilde{W} , достаточно проверить, что никакое зеркало группы \widetilde{W} не может содержать внутренних точек этого симплекса. Из определения симплекса D следует, что значения всех положительных корней в его внутренних точках строго положительны, а значения старшего корня и,

значит, — всех положительных корней строго меньше 1. Доказываемое утверждение следует теперь из описания зеркал группы \widetilde{W} .

Определение. Система корней $\widetilde{\Pi} = \{\alpha_0, \alpha_1, \dots, \alpha_n\}$, где $\alpha_0 = -\delta$ — младший корень, называется расширенной системой простых корней алгебры \mathfrak{g} .

Элементы системы $\widetilde{\Pi}$ связаны линейной зависимостью

$$k_0\alpha_0 + k_1\alpha_1 + \ldots + k_n\alpha_n = 0 \tag{8}$$

с целыми положительными коэффициентами, в которой $k_0 = 1$. При отождествлении пространства \mathbf{E}^* с \mathbf{E} можно сказать, что $\widetilde{\Pi}$ — это система внутренних нормалей симплекса D (нормированных определенным образом). Она описывается с точностью до подобия ориентированным графом, определяемым аналогично схеме простых корней и называемым расширенной схемой простых корней.

Из того, что группа W (как и любая дискретная группа отражений) действует просто транзитивно на множестве своих камер, следует, что ее нормализатор $N(\widetilde{W})$ в группе всех движений пространства $\mathbf E$ имеет вид

$$N(\widetilde{W}) = \widetilde{W} \setminus \operatorname{Sym} \widetilde{\Pi}.$$
 (9)

Заметим, что группа $\operatorname{Sym}\Pi$ естественным образом вкладывается в $\operatorname{Sym}\widetilde{\Pi}$ в виде стабилизатора корня $\alpha_0.$

Теорема 2. Имеет место разложение

$$\operatorname{Sym} \widetilde{\Pi} = \widehat{Z} \times \operatorname{Sym} \Pi, \tag{10}$$

где \widehat{Z} — нормальная подгруппа, изоморфная центру Z группы G.

Доказательство. Линейные части преобразований из $N(\widetilde{W})$ принадлежат группе $N(W) = W \times \operatorname{Sym} \Pi$ (см. (1)). С другой стороны, эта группа естественным образом вкладывается в $N(\widetilde{W})$ в виде стабилизатора нуля. Следовательно,

$$N(\widetilde{W}) = L \leftthreetimes N(W),$$

где $L \subset {\bf E}$ — некоторая решетка (рассматриваемая как группа параллельных переносов).

Найдем решетку L. Параллельный перенос t_c на вектор $c \in \mathbf{E}$ нормализует группу \widetilde{W} тогда и только тогда, когда $t_c r t_c^{-1} \in \widetilde{W}$ для любого отражения $r \in W$. Отражение r_{α} , связанное с корнем α , задается формулой

$$r_{\alpha}x = x - \alpha(x)\alpha^{\vee}. (11)$$

Простое вычисление показывает, что

$$t_c r_{\alpha} t_c^{-1} = t_{\alpha(c)\alpha^{\vee}}.$$

Следовательно, $c \in L$ тогда и только тогда, когда $\alpha(c) \in \mathbb{Z}$ для всех корней α . Это означает, что $L = Q^*$ — решетка, двойственная к решетке корней. Таким образом,

$$N(\widetilde{W}) = Q^* \setminus N(W) = (Q^* \setminus W) \times \operatorname{Sym} \Pi.$$
 (12)

С другой стороны, из (9) и определения группы \widetilde{W} следует, что

$$N(\widetilde{W}) = (P^* \setminus W) \setminus \operatorname{Sym} \widetilde{\Pi}.$$
 (13)

Из разложений (12) и (13) следует, что

$$\operatorname{Sym} \widetilde{\Pi} \simeq N(\widetilde{W})/(P^* \leftthreetimes W) \simeq (Q^*/P^*) \leftthreetimes \operatorname{Sym} \Pi.$$

Остается заметить, что $Q^*/P^* \simeq Z$.

Пример. Для группы SU_{n+1} (тип A_n) расширенная схема простых корней — это цикл длины n+1 с простыми ребрами. Группа ее симметрии имеет порядок 2(n+1) и является полупрямым произведением подгруппы поворотов, изоморфной центру группы SU_{n+1} , и подгруппы порядка 2, происходящей из симметрии самой схемы простых корней.

Замечание. Ясно, что всякая симметрия расширенной системы простых корней должна сохранять коэффициенты линейной зависимости между ними. В частности, младший корень α_0 может перейти только в корень, входящий в эту линейную зависимость с коэффициентом 1. Поэтому порядок центра группы G не превосходит количества таких коэффициентов. На самом деле, как показывает разбор случаев, всегда имеет место равенство, т.е. корни, входящие в линейную зависимость с коэффициентом 1, составляют одну орбиту группы симметрии.