ЛЕКЦИЯ 11

ПРОСТОТА ГРУППЫ SO_3

ГРУППЫ ИЗ ВОСЬМИ ЭЛЕМЕНТОВ

полупрямые произведения

ГРУППЫ ИЗ 12 ЭЛЕМЕНТОВ

ПРОСТОТА ГРУППЫ SO_3

В качестве примера использования геометрических соображений для доказательства простоты группы докажем, что группа \mathbf{SO}_3 проста.

 \mathbf{SO}_n — это группа всех движений евклидова пространства \mathbb{R}^n , сохраняющих ориентацию пространства.

В частности, интересующая нас сейчас группа ${\bf SO}_3$ — это группа движений трехмерного пространства, сохраняющих ориентацию пространства.

Рассмотрим произвольную матрицу $A \in \mathbf{SO}_3$. Если представить ее как комплексную матрицу, то она имеет три собственных значения: $\alpha_1, \alpha_2, \alpha_3$ (корни характеристического многочлена).

Заметим, что в курсе линейной алгебры доказывалось, что ортогональное пребразование всегда диагонализируемо на \mathbb{C} (так как любое подпространство, являющееся ортогональным дополнением к инвариантному, само является инвариантным).

Если α — какое-то собственное значение, а v_{α} — соответствующий собственный вектор (возможно, с комплексными координатами), то $|\alpha|=1$ (так как собственный вектор под действием движения не может изменять длину). Значит, возможны следующие корни характеристического многочлена (с учетом того, что их произведение равно единице, и что невещественные корни могут встречаться только в парах со своими сопряженными):

```
-1,1,1 (и тогда преобразование тождественно);
```

Таким образом, мы видим, что всегда существует собственный вектор с единичным собственным значением, т.е. прямая, точки которой отсаются на месте при преобразовании A.

^{-1, -1, -1;}

 $^{-1, \}cos \theta + i \sin \theta, \cos \theta - i \sin \theta.$

Ортогональное дополнение к этой прямой (перпендикулярная плоскость) будет инвариантным подпространством для A. Ясно, что на нем A действует как поворот на угол θ , а матрица A принимает вид

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}.$$

Таким образом, мы доказали, что любой элемент группы \mathbf{SO}_3 есть поворот вокруг какой-то оси на определенный угол α .

Преобразование, сопряженное с помощью элемента $g \in \mathbf{SO}_3$ повороту на угол α вокруг оси l, — это поворот на тот же угол вокруг оси gl.

Действительно, ясно, что у сопряженного отображения те же собственные значения, что и у исходного, поэтому поворот будет на тот же угол, что и у исходного. Осталось понять, какой вектор будет неподвижным (собственным со значением 1) у сопряженного отображения.

Пусть v — неподвижный вектор отображения A. Рассмотрим вектор gv. Тогда отображение gAg^{-1} действует на него так:

$$gAg^{-1}(gv) = gA(v) = gv,$$

т.е. прямая gl — неподвижная для сопряженного отображения.

Значит, всякая нормальная подгруппа группы \mathbf{SO}_3 вместе с поворотом на угол α вокруг какой-либо оси должна содержать поворот на угол α вокруг любой оси.

Легко видеть, что произведение поворотов на π вокруг осей m и m', образующих угол γ , есть поворот на угол 2γ вокруг оси, перпендикулярной плоскости осей m и m': ось, перпендикулярная прямым m и m', останется недвижимой, так как повернется два раза подряд на угол π ; ось m сначала останется на месте, а под действием второго преобразования повернется на 2γ (так как это будет отражение оси m относительно оси m').

Предположим теперь, что $N \triangleleft \mathbf{SO}_3$ — нормальная подгруппа, содержащая поворот на угол $\alpha \in (0, 2\pi)$ вокруг какой-то оси l.

Пусть g — поворот на π вокруг оси m, образующей с осью l угол $\theta \in [0,\pi/2]$. Тогда

$$h = g(sgs^{-1}) = (gsg^{-1})s^{-1} \in N;$$

но так как sgs^{-1} есть поворот на π вокруг оси sm, то, согласно предыдущему замечанию, h есть поворот на угол 2γ , где γ — угол между m и sm. Угол γ равен нулю при $\theta=0$ и равен α при $\theta=\pi/2$. Из соображений непрерывности следует, что он может принимать все значения на отрезке $[0,\alpha]$. Следовательно, группа N содержит повороты на все углы из отрезка $[0,2\pi]$. Возведением этих поворотов в степени можно получить поворот на любой угол. Это показывает, что $N=\mathbf{SO}_3$.

Таким образом, мы доказали следующую теорему:

Teopema 1. $\Gamma pynna$ \mathbf{SO}_3 npocma.

Можно показать, что группа \mathbf{SO}_n проста при любом $n \geq 3$, за исключением n = 4.

ГРУППЫ ИЗ 8 ЭЛЕМЕНТОВ

ТЕОРЕМА 2 (КЛАССИФИКАЦИЯ ГРУПП ИЗ 8 ЭЛЕМЕНТОВ). Любая группа из 8 элементов изоморфна одной из следующих:

- 1) \mathbb{Z}_{8} ;
- 2) $\mathbb{Z}_4 \oplus \mathbb{Z}_2$;
- 3) $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$;
- 4) D_4 ;
- 5) \mathbb{Q}_8 .

Никакие две из пересиленных выше групп не изоморфны друг другу.

Доказательство. Пусть |G|=8.

Если группа G абелева, то она изоморфна одной из первых трех перечиленных выше групп, по теореме о классификации конечных абелевых групп. Ясно, что эти группы не изоморфны друг другу и оставшимся двум группам.

Пусть теперь G — неабелева.

Если бы в группе G имелся бы элемент порядка восемь, то она оказалась бы циклической, т.е. абелевой, что невозможно.

Если бы в группе G все элементы имели бы порядок два, то она также была бы абелева.

Значит, в группе G все элементы имеют либо порядок два, либо четыре, при этом есть хотя бы один элемент порядка четыре. Обозначим его через a. Подгруппа $\langle a \rangle$ состоит из четырех элементов.

Пусть вне этой подгруппы имеется элемент b порядка два.

В этом случае все элементы

$$a^k b^l$$
, $k = 0, 1, 2, 3$, $l = 0, 1$,

различны. Так как их всего восемь, то любой элемент группы представляется в виде $a^k b^l$.

Подгруппа $\langle a \rangle$ имеет в группе G индекс два, поэтому она нормальна. Значит,

$$bab^{-1} = a^k.$$

Это означает, что либо $bab^{-1}=a$, либо $bab^{-1}=a^{-1}$. Первый случай невозможен, так как группа неабелева. Значит, выполнено второе соотношение.

Таким образом, данная группа изоморфна группе \mathbf{D}_4 движений квадрата.

Теперь рассмотрим оставшийся случай: вне подгруппы $\langle a \rangle$ все элементы имеют порядок четыре. Рассмотрим произвольный элемент $b \in G \setminus \langle a \rangle$. Ясно, что b^2 (как элемент порядка два) должен совпасть с a^2 . Таким образом, $a^2 = b^2 = c$ — это элемент центра групп G. Как и в предыдущем случае, $bab^{-1} = a^{-1} = ca$.

Если мы обозначим c через -1, a — через i, b — через j, а ab — через k, то полученная группа совпадет с \mathbb{Q}_8 .

ПОЛУПРЯМЫЕ ПРОИЗВЕДЕНИЯ ГРУПП

Ранее мы описывали ситуации, когда в группе G есть две подгруппы — N_1 и N_2 , такие, что:

- N_1 , N_2 обе нормальны в G;
- $N_1 \cap N_2 = \{e\};$
- $N_1N_2 = G$ (или $|N_1| \cdot |N_2| = |G|$).

В этом случае оказывалось, что группа G является прямым произведением $N_1 \times N_2$.

Мы сейчас обсудим чуть более общую ситуацию — когда в группе G есть две подгруппы N и H такие, что:

- N нормальна в G;
- $N \cap H = \{e\};$
- NH = G (или $|N| \cdot |H| = |G|$).

ЛЕММА 1. При таких условиях любой элемент g группы G однозначно представляется в виде g = nh, где $n \in N$, $h \in H$.

Доказательство. Действительно, если nh = n'h', то $n'^{-1}n = h'h^{-1}$, т.е. элемент из группы H равен элементу из группы N. Так как эти группы пересекаются только по единице, мы имеем $n'^{-1}n = h'h^{-1} = e$. Отсюда n = n', h = h'.

ЛЕММА 2. В описанной выше ситуации существует гомоморфизм

$$\varphi: H \to \operatorname{Aut} N$$

из подгруппы H в группу автоморфизмов группы N такой, что для любых $g=nh,\ g'=n'h',\ n,n'\in N,\ h,h'\in H,$ выполнено

$$gg' = nhn'h' = n(\varphi(h))(n')hh'.$$

Tаким образом, группа G полностью определяется подгруппами N, H и гомоморфизмом φ .

Доказательство. Действительно, пусть g = nh, g' = n'h'. Тогда

$$gg' = nhn'h' = n(hnh^{-1})hh'.$$

Так как подгруппа N нормальна в G, то $hnh^{-1} \in N$. Ясно, что для каждого $h \in H$ отображение, сопоставляющее каждому $n \in N$ элемент $hnh^{-1} \in N$, является автоморфизмом.

Это означает, что мы можем построить отображение $\varphi: H \to \operatorname{Aut} N$, сопоставляющее каждому $h \in H$ соответствующий автоморфизм. Ясно, что это отображение является гомоморфизмом.

ЛЕММА 3. Если фиксированы две группы — N и H — и некоторый гомоморфизм $\varphi: H \to \operatorname{Aut} N$, то по ним однозначно (с точностью до изоморфизма) строится группа G, содержащая подгруппы, изоморфные N и H такими, что $N \lhd G$, $N \cap H = \{e\}$, NH = G, для всех g = nh, g'n'h'

$$gg' = nhn'h' = n(\varphi(h))(n')hh'.$$

Доказательство. Сначала докажем, что такая группа всегда существует.

Действительно, группу G можно задавать как состоящую из пар (n,h), $n\in N,\,h\in H,$ с законом умножения

$$q \cdot q' = (n, h)(n', h') = (n(\varphi(h))(n'), hh').$$

Нам требуется доказать, что такой закон задает группу, то есть проверить ассоциативность, существование единицы и существование обратного.

• Ассоциативность.

$$((n_1, h_1) \cdot (n_2, h_2)) \cdot (n_3, h_3) = (n_1(\varphi(h_1))(n_2), h_1h_2) \cdot (n_3, h_3) =$$

$$= (n_1(\varphi(h_1))(n_2)(\varphi(h_1h_2))(n_3), h_1h_2h_3) =$$

$$= (n_1(\varphi(h_1))(n_2(\varphi(h_2))(n_3)), h_1h_2h_3) =$$

$$= (n_1, h_1) \cdot (n_2(\varphi(h_2))(n_3), h_2h_3) = (n_1, h_1) \cdot ((n_2, h_2) \cdot (n_3, h_3)).$$

• Нейтральный элемент.

$$(e_N, e_H) \cdot (n, h) = (e_N(\varphi(e_H))(n), e_H h) = (n, h).$$

• Наличие обратного.

$$(n,h) \cdot ((\varphi^{-1}(h))(n^{-1}), h^{-1}) =$$

$$= (n \cdot (\varphi(h))(\varphi^{-1}(h))(n^{-1}), hh^{-1}) = (nn^{-1}, e_H) = (e_N, e_H).$$

Таким образом, искомое полупрямое произведение всегда существует.

Очевидно, что построенная группа единственна с точностью до изоморфизма, так как ее таблица умножения (как мы видели выше) задается однозначно.

ГРУППЫ ИЗ 12 ЭЛЕМЕНТОВ

Теперь поставим задачу найти все группы из 12 элементов.

В группе из 12 элементов число n_2 силовских 2-подгрупп (из четырех элементов) может быть равно единице или трем, а число n_3 силовских 3-подгрупп (из трех элементов) — одному или четырем. Случай 1:1 означает, что обе подгруппы нормальны, то есть группа G есть прямое произведение своих силовских подгрупп. Так как группы из трех и четырех элементов — абелевы, то мы получи в результате абелеву группу, т.е. одну из двух: $\mathbb{Z}_4 \oplus \mathbb{Z}_3 \simeq \mathbb{Z}_{12}$ или $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$.

Пусть теперь группа не является прямым произведением. Для начала предположим, что $n_2=3,\ n_3=4.$

В этом случае мы имеем четыре группы из трех элементов, пересекающиеся только по единичному. Таким образом, элементов порядка три должно быть восемь штук. Остается всего 4 элемента, которые могут образовать не более одной группы порядка четыре. Значит, такой случай невозможен.

Остается четыре случая:

- нормальна подгруппа порядка три (изоморфная \mathbb{Z}_3), а подгруппа порядка четыре изоморфна \mathbb{Z}_4 ;
- нормальна подгруппа порядка три (изоморфная \mathbb{Z}_3), а подгруппа порядка четыре изоморфна \mathbf{V}_4 ;
- нормальна подгруппа порядка четыре, изоморфная \mathbb{Z}_4 ;
- \bullet нормальна подгруппа порядка четыре, изоморфная V_4 .

В первом случае мы получаем полупрямое произведение группы \mathbb{Z}_3 на группу \mathbb{Z}_4 , т.е. группа \mathbb{Z}_4 действует сопряжениями на группу \mathbb{Z}_3 . Значит,

требуется построить (нетривиальный) гомоморфизм группы \mathbb{Z}_4 в группу автоморфизмов группы \mathbb{Z}_3 .

Группа автоморфизмов группы \mathbb{Z}_3 изоморфна \mathbb{Z}_2 (единственным нетривиальным автоморфизмом является перестановка элементов 1 и 2 в \mathbb{Z}_3).

Именно в этот автоморфизм может отобразиться образующий из \mathbb{Z}_4 .

Таким образом, группа G в данном случае задается следующими образующими и соотношениями:

$$a, b;$$
 $a^3 = b^4 = e, bab^{-1} = a^{-1}.$

Названия у данной группы нет, ее центр состоит из двух элементов: $\{b^2,e\}$, коммутант порождается элементом a.

Во втором случае мы получаем полупрямое произведение группы \mathbb{Z}_3 на группу \mathbf{V}_4 , т.е. группа \mathbf{V}_4 действует сопряжениями на группу \mathbb{Z}_3 . Значит, требуется построить (нетривиальный) гомоморфизм группы \mathbf{V}_4 в группу автоморфизмов группы \mathbb{Z}_3 .

Если обозначить образующий группы \mathbb{Z}_3 за a, нетривиальный автоморфизм этой группы - за ξ , образующие группы \mathbf{V}_4 — за b и c, то видим, что каждая из образующих b и c отображается либо в ξ , либо в e.

Пусть b отображается в ξ . Тогда если c отображается в ξ , то bc отображается в e, а если c отображается в e, то bc отображается в ξ . Оба такие гомоморфизмы дадут в результате изоморфные группы, так как замена местами c и bc — это автоморфизм группы \mathbf{V}_4 .

Значит, рассмотрим гомоморфизм

$$b \mapsto \xi$$
, $c \mapsto e$.

Он задаст группу G в виде образующих и соотношений:

$$a, b, c;$$
 $a^3 = b^2 = c^2 = e,$ $bc = cb$ $ac = ca,$ $bab^{-1} = a^{-1}.$

Сразу видно, что подгруппа (порядка два), порожденная элементом c, коммутирует со всеми остальными образующими, т.е. выделяется прямым слагаемым.

Образующие b и a порождают группу $\mathbf{D}_3 = \mathbf{S}_3$. Таким образом, мы получаем группу $\mathbf{D}_3 \oplus \mathbb{Z}_2 = \mathbf{D}_6$.

Во третьем случае мы получаем полупрямое произведение группы \mathbb{Z}_4 на группу \mathbb{Z}_3 , т.е. группа \mathbb{Z}_3 действует сопряжениями на группу \mathbb{Z}_4 . Значит, требуется построить (нетривиальный) гомоморфизм группы \mathbb{Z}_3 в группу автоморфизмов группы \mathbb{Z}_4 .

У группы \mathbb{Z}_4 есть (как и у \mathbb{Z}_3) лишь один нетривиальный автоморфизм, при котором 1 и 3 меняются местами. Этот автоморфизм имеет порядок два.

Однако мы не можем построить нетривиальный гомоморфизм из группы \mathbb{Z}_3 в группу \mathbb{Z}_2 , поэтому никакого нетривиального полупрямого произведения не может возникнуть.

Во последнем случае мы имеем полупрямое произведение группы V_4 на группу \mathbb{Z}_3 , т.е. группа \mathbb{Z}_3 действует сопряжениями на группу V_4 . Значит, требуется построить (нетривиальный) гомоморфизм группы \mathbb{Z}_3 в группу автоморфизмов группы V_4 .

Как мы помним, группа автоморфизм группы V_4 изоморфна S_3 (можно произвольным образом переставить три неединичных элемента), поэтому нетривиальный гомоморфизм из \mathbb{Z}_3 можно устроить, переведя образующий этой группы (обозначим его через a) в "цикл длины три".

В виде образующих и соотношений это будет означать следующее:

$$a, b, c;$$
 $a^3 = b^2 = c^2 = e,$ $bc = cb, \quad aba^{-1} = c, \quad aca^{-1} = bc, \quad a(bc)a^{-1} = b.$

Легко доказать, что эта группа изоморфна \mathbf{A}_4 ($a\mapsto (123), b\mapsto (12)(34), c\mapsto (14)(23)$).

Таким образом, мы доказали следующую теорему:

ТЕОРЕМА 3 (КЛАССИФИКАЦИЯ ГРУПП ИЗ 12 ЭЛЕМЕНТОВ). Любая группа из 12 элементов изоморфна одной из следующих:

- 1) \mathbb{Z}_12 ;
- 2) $\mathbb{Z}_2 \oplus \mathbb{Z}_6$;
- 3) $\langle a, b \mid a^3 = b^4 = e, bab^{-1} = a^{-1} \rangle;$
- 4) D_6 ;
- 5) A_4 .

Никакие две из перечисленных выше групп не изоморфны друг другу.