Ю.Г. Прохоров Спецкурс "Алгебраическая геометрия" (проблемы рациональности)

Лекции читаются по понедельникам 10.50-12.25, ауд. 12-25

Программа

- (1) Рациональные отображения. Точки неопределенности. Случай кривых. Рациональное отображение в проективное многообразие определено в коразмерности 1. Рациональность и унирациональность (над незамкнутыми полями). Рациональные точки. Лемма Нишимуры. Примеры рациональных многообразий. Плоские кривые. Квадрики.
- (2) Рациональные точки на квадриках. Поля типа C_1 . Теорема Шевалле. Алгебраическое расширение поля типа C_1 снова поле типа C_1 . Теорема Цзена. Понятие о принципе Хассе.
- (3) Кубические гиперповерхности. Некоторые условия рациональности и унирациональности. Существование прямой на кубической поверхности над алгебраически замкнутым полем. Дифференциальные (1-)формы. Определение и простейшие свойства. Примеры.
- (4) Рациональные дифференциальные формы. Их свойства. Продолжение рациональной дифференциальной формы на подмножество коразмерности ≥ 2. Поведение форм при рациональных отображениях. Численные препятствия к рациональности и унирациональности.
- (5) Понятие кодаировой размерности. Дифференциальные формы старшей степени на гиперповерхностях. О проблеме Э. Нетер. Группа Брауэра (определение). Когомологии групп. Интерпретация $H^0(G,A)$, $H^1(G,A)$ и $H^2(G,A)$.
- (6) Когомологии групп (продолжение). Когомологии Галуа $H^q(K/k, K)$ и $H^1(K/k, K^*)$ (теорема Гильберта 90). Группа Брауэра (продолжение). Примеры. связь с $H^2(K/k, K^*)$.

- (7) Группа Брауэра локального поля. Препятствия к рациональности полей инвариантов. Неразветвленная группа Брауэра. Достаточное условие ее нетривиальности.
- (8) Неразветвленная группа Брауэра и достаточное условие ее нетривиальности (повторение). Когомологии $H^q(G, M)$, где G конечная группа, а M бесконечно делимый модуль с тривиальным действием G. Следствия. Построение контрпримера к проблеме Э. Нетер.
- (9) Неразветвленная группа Брауэра поля рацинальных функций K(t) ($\Phi \operatorname{Br} K(t) = \Phi \operatorname{Br} K$.). Стабильная эквивалентность различных факторов по точным представлениям конечной группы.

Задачи.

- (1) Докажите аналог теоремы Хассе для полных пересечений в \mathbb{P}^n .
- (2) Пусть X гиперповерхность в \mathbb{P}^{p-2} над \mathbb{F}_p определенная уравнением $x_0^{p-1}+\cdots x_{p-2}^{p-1}=0$. Докажите, что X неособа и не имеет \mathbb{F}_p -точек.
- (3) Найдите число \Bbbk -точек на невырожденной квадрике $\sum x_i^2 = 1$ над полем $\Bbbk = \mathbb{F}_q$.
- (4) Двумерная невырожденная квадрика $X \subset \mathbb{P}^3$ имеет \mathbb{k} -точку. Следует ли отсюда, что $X \simeq \mathbb{P}^1_{\mathbb{k}} \times \mathbb{P}^1_{\mathbb{k}}$?
- (5) Сформулируйте необходимые и достаточные условия рациональности квадрик над \mathbb{R} . Когда эти квадрики изоморфны?
- (6) Пусть X алгебраическое многообразие и пусть $f \in \mathbb{k}(X)$ рациональная функция такая, что df = 0. Когда это возможно?
- (7) Докажите, что неособое полное пересечение \mathbb{P}^n гиперповерхностей степеней d_1 и d_2 нерационально при $d_1+d_2\geq n+1$.
- **(8)** Докажите, что k(x, y) не поле типа C_1 .
- (9) Рассмотрим кубическую поверхность

$$t(x^2 + y^2) = (4z - 7t)(z^2 - 2t^2)$$

Докажите, что множество вещественных точек имеет две компоненты связности, причем одна из них не имеет рациональных точек, а на другой рациональные точки плотны.

(10) Коразмерность семейства 2n-мерных кубик, содержащих пару скрещенных подпространств размерности n, в пространстве всех кубик.

- (11) Докажите, что конечномерная простая алгебра обязательно содержит единицу.
- (12) Докажите, что произведение алгебры с ее инверсной изоморфно матричной алгебре.
- (13) Докажите, что класс (обобщенной) кватернионной алгебры элемент второго порядка в группе Брауэра.
- (14) Докажите, что алгебра, заданная соотношениями $e_g \cdot e_h = f(g,h)e_{qh}, e_q \cdot b = g(b) \cdot e_q$, является центральной простой.
- (15) Приведите примеры циклических некватернионных алгебр.
- (16) Пусть K поле частных кольца $\mathbb{Q}[x,y]/(y^2-x^3+x)$ (поле рациональных функций на эллиптической кривой). Рассмотрим обобщенную кватернионную алгебру \mathbb{H} с $\mathbf{i}^2=-1$, $\mathbf{j}^2=x$. Докажите, что эта алгебра неразветвлена. Докажите, что \mathbb{H} не лежит в образе естественного отображения $\mathrm{Br}\,\mathbb{Q}\to\mathrm{Br}\,K$.
- (17) Приведите пример конечно порожденного расширения полей K/\mathbb{k} степени трансцендентности 1 такого, что отображение $\operatorname{Br} K \to \operatorname{Br} K$ не является инъективным. Указание: Рассмотрите кватернионную алгебру.
- (18) Дайте прямое доказательство того, что построенный элемент $\Phi \text{Br } \Bbbk(V)^G$ (как образ элемента $H^2(G, \Bbbk^*)$) зануляется, если группа G абелева.