Преподаватель: Д.А.Тимашёв
Занятия проходят по понедельникам и четвергам на 4-й паре (15:00-16:35) в ауд. 407.
Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И.Кострикина, новое изд., Москва, МЦНМО, 2009. Дополнительные задачи помечены знаком ★.
Векторные пространства: простейшие следствия из аксиом, примеры (в частности: множество 2X всех подмножеств множества X как векторное пространство над Z2, абелеву группу Z нельзя превратить в векторное пространство). Изоморфизм векторных пространств (пример: 2X ≅ {функции X→Z2}). Линейные комбинации векторов, линейная зависимость, примеры линейно независимых систем функций. Базис, размерность, координаты. Изоморфизм конечномерного векторного пространства с арифметическим. Расширения полей как векторные пространства, число элементов конечного поля.
Дополнение линейно независимой системы векторов до базиса. Матрица перехода к другому базису, её свойства, преобразование координат вектора при замене базиса. Подпространства, примеры. Базис, согласованный с подпространством.
Пересечение и сумма двух подпространств (объединение — вообще говоря, не подпространство). Базис, согласованный с парой подпространств, формула Грассмана для размерности их суммы (пример: 7-мерное подпространство пространства матриц размера 4×4 содержит ненулевую симметрическую матрицу). Инварианты взаимного расположения пары подпространств, обсуждение инвариантов троек подпространств. Прямая сумма подпространств, проекции на прямые слагаемые (пример: разложение пространства квадратных матриц в прямую сумму подпространств симметрических и кососимметрических матриц).
Линейные функции на векторном пространстве V, их координатная запись. Ядро линейной функции. Сопряжённое пространство V*, сопряжённый базис. Канонический изоморфизм пространств V и (V*)* в конечномерном случае. Двойственность между векторами и линейными функциями (ковекторами). Критерий базисности набора ковекторов, применение: интерполяционная формула Лагранжа.
Аннулятор подпространства, его размерность. Совпадение второго аннулятора подпространства с этим подпространством в конечномерном случае. Задание подпространства однородной системой линейных уравнений ⇔ нахождение базиса аннулятора подпространства. Нахождение суммы и пересечения подпространств.
Линейные отображения, их матрицы, запись линейного отображения в координатах. Преобразование матрицы линейного отображения при замене базисов.
Ядро и образ линейного отображения. Канонический вид матрицы линейного отображения. Линейные операторы в векторном пространстве, их матрицы. Преобразование матрицы линейного оператора при замене базиса.
Инвариантные подпространства линейного оператора. Собственные векторы и собственные значения. Характеристический многочлен, его коэффициенты. Собственные подпространства. Алгебраическая и геометрическая кратности собственного значения. Диагонализуемые операторы, эквивалентные условия диагонализуемости.
Коммутирующие семейства диагонализуемых линейных операторов диагонализуемы одновременно. Проекторы. Корневые векторы и корневые подпространства линейного оператора, их свойства. Нахождение корневых подпространств.
Нильпотентные операторы: жорданов базис, диаграммы Юнга. Жорданова нормальная форма (ЖНФ) линейного оператора, формулы для количества жордановых клеток с заданным собственным значением (всех и данного размера). Нахождение ЖНФ и жорданового базиса для линейного оператора.
Нахождение ЖНФ и жорданового базиса для линейного оператора. Критерий нильпотентности линейного оператора в терминах собственных значений.
Вычисление циркулянта. Извлечение корней из линейных операторов и матриц.
Многочлены от линейных операторов и матриц. Аннулирующие многочлены, теорема Гамильтона–Кэли. Минимальный многочлен, его свойства и вычисление. Вычисление многочлена от линейного оператора (матрицы) нахождением остатка при делении на минимальный многочлен. Аналитические функции от линейных операторов и матриц, их вычисление с помощью интерполяционного многочлена.
Билинейные функции, их запись в координатах (билинейные формы). Матрица билинейной функции, её преобразование при замене базиса. Дискриминант, невырожденные билинейные функции. Ранг билинейной функции. Классификация билинейных функций ранга ≤ 1. Симметрические и кососимметрические билинейные функции, разложение пространства билинейных функций в прямую сумму подпространств симметрических и кососимметрических функций.
Квадратичные функции, поляризация. Канонический вид симметрических билинейных и квадратичных функций, метод Лагранжа приведения к каноническому виду.
Метод Якоби приведения квадратичной фукнции к каноническому виду. Нормальный вид симметрических билинейных и квадратичных функций над полями C и R, закон инерции. Неотрицательные и положительно определённые квадратичные фукнции, критерий Сильвестра. Геометрический смысл индексов инерции.
Евклидовы векторные пространства. Длина вектора, её свойства. Неравенство Коши–Буняковского. Ортогональность векторов, линейная независимость ортогональной системы ненулевых векторов. Обобщённая теорема Пифагора. Ортогональные и ортонормированные базисы, ортогональные системы координат. Ортогональное дополнение к подпространству, его свойства. Ортогональная проекция и ортогональная составляющая вектора относительно подпространства. Процесс ортогонализации Грама–Шмидта. Матрица и определитель Грама, их свойства.
Объём многомерного параллелепипеда в евклидовом пространстве. Вычисление объёма параллелепипеда, натянутого на одночлены 1, x, … , xn, в пространстве многочленов со скалярным умножением (f|g)=∫fgdx (интеграл по [-1,1]) при n = 1, 2, 3. Расстояние между векторами в евклидовом пространстве, его свойства. Расстояние между вектором и подпространством.
Угол между векторами, линейная независимость системы векторов с попарными углами π/3. Угол между вектором и подпространством.
Ортогональные операторы и их матрицы. Свойства ортогональных операторов: сохранение длин, расстояний, углов, возможные собственные значения, ортогональность собственных подпространств, инвариантность ортогонального дополнения к инвариантному подпространству. Канонический вид матрицы ортогонального оператора.
Приведение матрицы ортогонального оператора к каноническому виду. Комплексификация вещественных векторных пространств и линейных операторов. Нахождение 2-мерного инвариантного подпространства для линейного оператора над R, не имеющего собственных векторов.
Соответствие между линейными операторами и билинейными функциями в евклидовом пространстве. Сопряжённый оператор, его матрица. Подпространство U инвариантно относительно оператора A ⇒ ортогональное дополнение к U инвариантно относительно сопряжённого оператора A*. Оператор A ортогонален ⇔ A* обратен к A.
Симметрические (самосопряжённые) операторы. Наличие собственного вектора и ортогональность собственных подпространств симметрического оператора. Канонический вид матрицы симметрического оператора.
Приведение симметрических билинейных и квадратичных функций к главным осям. Неотрицательные и положительно определённые симметрические операторы, пример: A*·A, где A — произвольный оператор в евклидовом пространстве. Критерий неотрицательности и положительной определённости симметрического оператора в терминах собственных значений. Извлечение квадратного корня из неотрицательного и положительно определённого оператора. Полярное разложение невырожденного линейного оператора в евклидовом пространстве.
Аффинные пространства. Векторизация. Координаты в аффинном пространстве, замена координат. Плоскости в аффинном пространстве, способы их задания (опорная точка + направляющее подпространство, параметрический способ, аффинная оболочка, система линейных уравнений). Взаимное расположение плоскостей в аффинном пространстве, размерность аффинной оболочки их объединения и их пересечения, степень параллельности.
Задачи: определить, пересекаются ли две плоскости; найти размерность аффинной оболочки их объединения и их пересечения, или степень их параллельности; провести через точку прямую, пересекающую две плоскости. Евклидовы аффинные пространства: расстояние между точками, от точки до плоскости и между плоскостями.
Аффинные отображения и преобразования, достаточное условие наличия неподвижных точек. Движения евклидовых пространств, вектор скольжения. Классификация движений в размерностях 2 и 3, задача на геометрическое описание движения 2-мерной плоскости.
Задача на геометрическое описание движения 3-мерного пространства.
Квадратичные функции на аффинном пространстве, их координатная запись, расширенная матрица квадратичной функции. Квадратичные гиперповерхности (квадрики). Приведение квадратичной функции (квадрики) к каноническому или к нормальному виду и к главным осям. Различные типы квадрик (центральные и нецентральные, конические и неконические). Центр квадратичной функции (квадрики), его нахождение.
Тензоры, примеры: тензоры малых валентностей, det. Операции над тензорами: сложение, умножение на скаляры, тензорное умножение. Компоненты тензора, тензорный базис, правило Эйнштейна. Ковариантные и контравариантные тензоры, симметрические и кососимметрические тензоры. Внешнее умножение кососимметрических тензоров, его свойства, связь с определителями. Базис и размерность пространства кососимметрических тензоров. Канонический вид кососимметрической билинейной функции, приведение к каноническому виду с помощью внешнего умножения (аналог метода Лагранжа).