Преподаватель: Д.А.Тимашёв
Занятия проходят на 3-й паре (13:15-14:50) по понедельникам на каждой чётной неделе в ауд. 406 и по четвергам в ауд. 14-15.
Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И.Кострикина, новое изд., Москва, МЦНМО, 2009. Дополнительные задачи помечены знаком ★.
Системы линейных уравнений (СЛУ). Метод Крамера решения квадратных СЛУ малых размеров (2×2 и 3×3). Определители 2-го и 3-го порядка.
Элементарные преобразования СЛУ и их матриц. Метод Гаусса решения СЛУ. Критерий совместности и определённости квадратной СЛУ: ассоциированная ОСЛУ должна быть определена.
Арифметическое векторное пространство Rn. Линейная зависимость и базис системы векторов.
Ранг системы векторов. Координаты вектора в базисе. Стандартный базис в Rn. Алгоритм нахождения базиса конечной системы векторов в Rn. Ранг матрицы, его свойства.
Вычисление ранга матрицы. Подпространства в Rn, примеры: линейная оболочка системы векторов, пространство решений ОСЛУ. Фундаментальная система решений ОСЛУ, её нахождение.
Алгебраические операции над матрицами, их свойства, нулевая и единичная матрицы. Некоммутативность умножения матриц, делители нуля и нильпотентные матрицы, нильпотентность нильтреугольных матриц. Умножение на диагональные матрицы и на матричные единицы.
Элементарные матрицы, умножение на них слева и справа. Обратная матрица. Если матрица N нильпотентна, то матрицы E+N и E-N обратимы. Решение матричных уравнений вида AX=B. Нахождение обратной матрицы.
Обратная матрица к произведению матриц, к транспонированной матрице. Задача: как изменится A-1, если записать строки матрицы A в обратном порядке?
Перестановки и подстановки, их количество. Умножение подстановок. Циклические подстановки, разложение произвольной подстановки на независимые циклы, применение к возведению подстановок в степень.
Решение уравнений в подстановках. Чётность и знак перестановок и подстановок. Знак цикла. Задача про «пятнашки»: можно ли, последовательно передвигая фишки на соседнее свободное место, поменять местами фишки 14 и 15, оставив остальные фишки на месте? Можно ли, вращая слои куба Рубика на шарнирах, добиться того, чтобы угловые кубики одной из граней переставились по кругу, а остальные кубики остались на своих местах (возможно, повернувшись)?
Определители квадратных матриц, их вычисление по развёрнутой формуле. Свойства определителя, его изменение при различных преобразованиях матрицы. Вычисление определителей приведением к треугольному виду.
Определитель с углом нулей. Определитель Вандермонда. Разложение определителя по строке и столбцу.
Трёхдиагональные определители и линейные однородные рекуррентные уравнения 2-го порядка. Определитель произведения матриц.
Вычисления над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексных чисел, решение алгебраических задач геометрическими методами (пример: уравнение |(z-1+i)/(z+1-i)|=1) и геометрических задач методами алгебры комплексных чисел (пример: доказательство теоремы о том, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон).
Тригонометрическая форма записи комплексных чисел, вычисления над комплексными числами в тригонометрической форме. Выражение тригонометрических функций кратных углов через функции исходного угла и степеней тригонометрических функций через функции кратных углов в первой степени с помощью комплексных чисел.
Извлечение корней из комплексных чисел. Корни из 1, сумма и произведение всех корней степени n из 1. Вычисление сумм с помощью комплексных чисел.
Многочлены от одной переменной над полем: деление с остатком, теорема Безу, схема Горнера. Разложение многочлена по степеням линейного двучлена, значения высших производных и кратность корня многочлена, формула Тейлора.
Разложение многочленов на неприводимые множители. Наибольший общий делитель (НОД) многочленов и алгоритм Евклида. Линейное выражение НОД через исходные многочлены: НОД(f,g)=uf+vg, его единственность при ограничениях на степени u и v, и его нахождение методом неопределённых коэффициентов. Избавление от кратных неприводимых множителей в разложении многочлена.
Разложение многочленов на неприводимые множители над полями C и R. Неприводимых многочленов над любым полем бесконечно много. Существование неприводимых многочленов сколь угодно большой степени над конечным полем. Алгоритм нахождения всех неприводимых многочленов степени ≤n над конечным полем. Нахождение всех неприводимых многочленов степени ≤4 над полем Z2.
Рациональные корни многочлена с целыми или рациональными коэффициентами. Редукция многочленов с целыми коэффициентами по простому модулю, её свойства. Примитивные многочлены, лемма Гаусса. Разложимость многочлена с целыми коэффициентами на множители меньшей степени в Q[x] равносильна разложимости на множители меньшей степени в Z[x]. Разложение многочленов на множители над Q с помощью редукций.
Рациональные дроби: представление в виде суммы многочлена и правильной дроби, разложение правильной дроби в сумму простейших дробей методом неопределённых коэффициентов, случай полей C и R.
Многочлены от нескольких переменных, степень одночлена и многочлена, однородные компоненты многочлена. Лексикографический порядок на одночленах, старший член многочлена, старший член произведения многочленов. Симметрические многочлены: основная теорема, метод неопределённых коэффициентов для нахождения выражения произвольного симметрического многочлена через элементарные. Выражение степенных сумм s1, s2, s3, s4 через элементарные симметрические многочлены. Теорема Виета. Решение симметрических систем алгебраических уравнений.