Семинары, 201 группа

Преподаватель: Д.А. Тимашёв

Занятия проходят по субботам на 2-й паре (10:45-12:20) в ауд. 404.

Расписание зачётов:
Экзамен:
Консультация:

Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И. Кострикина, новое изд., Москва, МЦНМО, 2009. Дополнительные задачи помечены знаком ★.


10 сентября 2022

Гомоморфизмы и изоморфизмы групп. Примеры изоморфных и неизоморфных групп: аддитивная и мультипликативная группы поля R, а также группа положительных вещественных чисел по умножению; Z_6, S_3 и D_3; Z_4 и V_4; GL_2(C) и GL_3(C). Порядок элемента группы, его свойства, циклические группы. Проблема классификации конечных групп, группы простого порядка.

Домашнее задание:

17 сентября 2022

Сопряжённость элементов в группе, классы сопряжённости, центр группы. Вычисление классов сопряженности и центра для групп Q_8, S_n, D_n.

Домашнее задание:

24 сентября 2022

Классы сопряженности в группе A_n. Нормальные подгруппы, их перечисление в группах S_3, S_4.

Домашнее задание:

1 октября 2022

Факторгруппы, их вычисление с помощью основной теоремы о гомоморфизмах. Автоморфизмы групп, группа внутренних автоморфизмов Inn(G), её нормальность в Aut(G). Автоморфизмы циклических групп, вычисление Aut(Aut(Aut Z_9)).

Домашнее задание:

8 октября 2022

Прямое произведение (прямая сумма) групп, примеры разложений и неразложимости групп в прямые произведения (прямые суммы). Полупрямое произведение групп, примеры.

Домашнее задание:

15 октября 2022

Системы порождающих в группе, конечно порождённые и не конечно порождённые группы, примеры. Случай абелевых групп, свободные конечно порождённые группы. Структура конечно порождённых абелевых групп, её определение, исходя из представления группы в виде факторгруппы свободной группы по подгруппе, заданной набором порождающих элементов, приведением целочисленной матрицы координат порождающих элементов подгруппы к «диагональному» виду. Вычисление порядка элемента в конечно порождённой абелевой группе, представленной как факторгруппа свободной группы.

Домашнее задание:

26 октября 2022

Конечные абелевы группы, их структура, тип группы. Классификация конечных абелевых групп заданного порядка. Определение типа факторгруппы конечной (или конечно порождённой) абелевой группы. Вложимость конечных абелевых групп друг в друга. Количество подгрупп заданного порядка в данной конечной абелевой группе.

Домашнее задание:

29 октября 2022

Действия групп на множествах, описание орбит и стабилизаторов. Действие группы на себе сопряжениями: классы сопряжённости и централизаторы, число элементов в классе сопряжённости, формула классов.

Домашнее задание:

5 ноября 2022

Коммутант группы, его свойства. Вычисление коммутанта группы G методом оценки сверху (ядро гомоморфизма G в абелеву группу) и снизу (подгруппа, порождённая некоторым количеством коммутаторов). Кратные коммутанты, разрешимые группы, критерий разрешимости (в терминах подгруппы и факторгруппы).

Домашнее задание:

12 ноября 2022

Коллоквиум


19 ноября 2022

Силовские подгруппы, теоремы Силова, примеры: силовские подгруппы в A_4, в GL_2(Z_p), в прямом произведении групп. Арифметика конечных групп: доказательство непростоты групп заданного порядка.

Домашнее задание:

26 ноября 2022

Арифметика конечных групп: доказательство разрешимости и коммутативности групп заданного порядка (12 и 455).

Линейные и матричные представления групп, в том числе мономиальное представление симметрической группы и представление в пространстве функций на множестве с действием группы. Приводимые, неприводимые и вполне приводимые представления, разложение в прямую сумму неприводимых представлений.

Домашнее задание:

3 декабря 2022

Теорема Машке. Описание неприводимых комплексных представлений конечных абелевых групп (пример: V_4). Описание одномерных комплексных представлений конечных групп (пример: S_3×D_5). Факты о количестве и размерностях неприводимых комплексных представлений конечной группы. Описание всех неприводимых комплексных представлений группы D_n.

Домашнее задание:

10 декабря 2022

Кольца, алгебры, структурные константы. Классификация двумерных комплексных алгебр с единицей. Идеалы, главные идеалы, кольца главных идеалов. Факторалгебры K[x]/(f), их свойства, вычисления в K[x]/(f). Присоединение корня, избавление от иррациональности в знаменателе. Минимальный многочлен.

Домашнее задание:

17 декабря 2022

Контрольная работа
  1. Вычисление факторгруппы свободной абелевой группы и нахождение в ней порядка заданного элемента (1 вариант) и количества элементов заданного порядка (2 вариант).
  2. Нахождение централизатора элемента группы подстановок и количества элементов в его классе сопряжённости (1 вариант); описание орбит действия группы на множестве (2 вариант).
  3. Доказательство коммутативности группы заданного порядка (1 вариант); описание силовских подгрупп в группе (2 вариант).
  4. Вычисление производного ряда группы (1 вариант); доказательство разрешимости группы заданного порядка (2 вариант).
  5. Описание одномерных комплексных представлений группы.
  6. Избавление от иррациональности в знаменателе выражения в поле, получаемом присоединением корня неприводимого многочлена к полю Z_2 (1 вариант) и C (2 вариант).