следующий анонс
9 ноября 2005 предыдущий анонс
О.С. Якимова

Quantisation of Slodowy slices
(аfter Gan-Ginzburg and Premet)


Let g be a complex semisimple Lie algebra and G the adjoint group of g. For any sl_2-triple (e,h,f) in g the affine space S=(e+Ker ad(f)) is said to be the Slodowy slice to the nilpotent orbit Ge. Using the Killing form on g one can identify S with z(e)^*, where z(e) is the centraliser of e in g. But S has another Poisson structure (different from that of z(e)^*) obtained via Hamiltonian reduction. This Poisson structure has several nice properties, for example, the Poisson centre of C[S] is a polynomial algebra. In this talk, we will construct a quantisation of S.

список заседаний 2005-2006