следующий анонс |
9 ноября 2005 | предыдущий
анонс |
О.С. Якимова
Quantisation of
Slodowy
slices
(аfter Gan-Ginzburg and Premet) Let g be a complex semisimple
Lie algebra and G the adjoint group of g. For any sl_2-triple (e,h,f)
in g the affine space S=(e+Ker ad(f)) is said to be the Slodowy slice
to the nilpotent orbit Ge. Using the Killing form on g one can identify
S with z(e)^*, where z(e) is the centraliser of e in g. But S has
another Poisson structure (different from that of z(e)^*) obtained via
Hamiltonian reduction. This Poisson structure has several nice
properties, for example, the Poisson centre of C[S] is a polynomial
algebra. In this talk, we will construct a quantisation of S.
список
заседаний 2005-2006 |