Это старая версия документа!


Лекции по алгебре, 1 курс 2 поток, осень 2018, лектор И.В.Аржанцев


Лекция 10 (16.10.2018) Определитель с углом нулей. Определитель Вандермонда. Миноры и алгебраические дополнения. Разложение определителя по строке и по столбцу. Фальшивое разложение. Присоединенная матрица. Формула для обратной матрицы. Определитель произведения матриц.

Лекция 9 (13.10.2018) Определитель верхнетреугольной матрицы. Свойства определителя: полилинейность, кососимметричность, неизменность при транспонировании. Изменение определителя при элементарных преобразованиях. Невырожденность равносильна отличию определителя от нуля. Определитель как единственная кососимметрическая полилинейная нормированная функция.

Лекция 8 (06.10.2018) Обратная подстановки. Разложение подстановки в произведение независимых циклов. Транспозиции. Разложение подстановки в произведение транспозиций. Инверсия. Четность подстановки. Изменение четности при умножении на транспозицию. Число четных подстановок равно числу нечетных. Знак подстановки. Знак произведения. Четность обратной подстановки. Определение определителя формулой.

Лекция 7 (02.10.2018) След матрицы. Единичная матрица. Элементарные матрицы. Обратная матрица. Алгоритм нахождения обратной матрицы с помощью элементарных преобразований. Матрица обратима тогда и только тогда, когда она невырождена. Ранг произведения матриц. Перестановки, их количество. Умножение подстановок. Ассоциативность. Единичная подстановка.

Лекция 6 (29.09.2018) Критерий определенности СЛУ в терминах рангов. Сложение матриц и умножение матрицы на скаляр. Умножение матриц. Матричная форма записи СЛУ. Умножение на диагональную матрицу. Скалярные матрицы. Свойства операций: ассоциативность, дистрибутивность, отсутствие коммутативности. Транспонирование и его свойства. Матричные единицы и символы Кронекера.

Лекция 5 (22.09.2018) Строчный и столбцовый ранги матрицы. Элементарные преобразования строк не изменяют линейных соотношений между столбцами. Совпадение строчного и столбцового рангов. Алгоритм нахождения базы. Размерность пространства решений однородной системы равна n-rk A. Для любого линейного подмногообразия найдется СЛУ, множеством решений которой оно является. Теорема Кронекера-Капелли.

Лекция 4 (18.09.2018) Множество решений системы - подпространство тогда и только тогда, когда система однородна. Фундаментальная система решений (ФСР). Размерность пространства решений равна числу свободных неизвестных. Алгоритм нахождения ФСР. Множество решений СЛУ является линейным подмногообразием: произвольное решение есть сумма частного решения и решения ассоциированной однородной системы. Ранг и база конечной системы векторов. Эквивалентные наборы векторов, неизменность ранга при элементарных преобразованиях.

Лекция 3 (15.09.2018) Подпространства. Линейная оболочка. Порождающее множество для подпространства. Основная лемма о линейной зависимости. Базис подпространства арифметического векторного пространства. Стандартный базис в R^n. Дополнение линейно независимого набора до базиса. Размерность: корректность определения. Свойства размерности.

Лекция 2 (08.09.2018) Обратимость элементарных преобразований. Метод Гаусса. Экзотические уравнения и критерий совместности. Строго ступенчатые матрицы и критерий определенности. Системы, где число уравнений меньше числа неизвестных. Арифметическое векторное пространство. Линейная комбинация. Линейная зависимость и независимость: примеры и основные свойства.

Лекция 1 (04.09.2018) Общая информация о курсе и контрольных мероприятиях. Системы линейных уравнений малых порядков, главные и свободные неизвестные, формулы Крамера для систем второго порядка. Общий вид системы линейных уравнений, матрица коэффициентов и расширенная матрица системы, совместные и определенные системы, однородные системы, эквивалентные системы, три типа элементарных преобразований строк матрицы, лидер строки, ступенчатые и верхнетреугольные матрицы. Приведение матрицы к ступенчатому виду. Улучшенный ступенчатый вид. Элементарные преобразования над уравнениями системы.