Различия
Показаны различия между двумя версиями страницы.
| Предыдущая версия справа и слева Предыдущая версия Следующая версия | Предыдущая версия | ||
|
лекции_2_курс_1_поток_осень_2022 [13.12.2022 19:17] gordienko |
лекции_2_курс_1_поток_осень_2022 [08.04.2025 16:43] (текущий) |
||
|---|---|---|---|
| Строка 70: | Строка 70: | ||
| __Упражнение*: | __Упражнение*: | ||
| - | (продолжение следует) | + | 24) **19.12.2022.** Нильпотентные элементы. Ниль-кольца. Нильпотентные кольца. Алгебры Ли. Примеры. Антикоммутативность в случае поля характеристики 2. |
| + | |||
| + | __Упражнение: | ||
| + | |||
| + | __Упражнение:__ вывести из правила Лейбница и антикоммутативности, | ||
| + | |||
| + | Понятие о группах Ли. Нильпотентные группы. Центральные ряды. Нижний центральный ряд. Верхний центральный ряд. Связь между ними. Критерий нильпотентности в терминах центральных рядов. Критерий нильпотентности в терминах факторгруппы по центру. Нильпотентность конечной p-группы. | ||
| + | |||
| + | ---- | ||
| + | |||
| + | Темы, которые мы разобрать **не успели** (их, конечно же, **нет** и в программе экзамена). Теорема Веддербёрна о конечных телах. Модули над кольцами. Неприводимые модули. Групповая алгебра и модули над ней. Полная приводимость модулей над кольцом квадратных матриц. Неприводимые модули над кольцом квадратных матриц. Теорема о строении конечно порождённых модулей над к.г.и. Приложение к теореме о приведении матрицы линейного оператора к ж.н.ф. | ||
| __Примечание.__ Упражнения со знаком * являются необязательными (хотя они могут быть и очень простыми). Прочие упражнения являются обязательными и входят в программу экзамена. | __Примечание.__ Упражнения со знаком * являются необязательными (хотя они могут быть и очень простыми). Прочие упражнения являются обязательными и входят в программу экзамена. | ||