Это старая версия документа!


Семинары, 205 группа

Преподаватель: Д.А. Тимашёв

Занятия проходят по понедельникам на 1-й паре (9:00-10:35) в ауд. 439.

<fc #FF0000>Объявления:</fc>

  • Коллоквиум по алгебре пройдёт на семинаре 15 ноября (понедельник, 1-я пара).
  • Дополнительный семинар по алгебре пройдёт в среду 17 ноября на 2-й паре (10:45-12:20) в ауд. 439.

Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И. Кострикина, новое изд., Москва, МЦНМО, 2009. Дополнительные задачи помечены знаком ★.


6 сентября 2021

Задание конечных групп таблицей умножения, примеры: группа Клейна V_4, группа кватернионов Q_8. Примеры изоморфных и неизоморфных групп: аддитивная и мультипликативная группы поля R, а также группа положительных вещественных чисел по умножению; Z_4 и V_4; GL_2(C) и GL_3(C). Порядок элемента группы, его свойства, циклические группы. Теорема Лагранжа и её следствия. Проблема классификации конечных групп, группы простого порядка.

Домашнее задание:
  • 55.16, 55.25абг, 55.26, 56.7в, 56.10, 56.11;
  • какие из групп изоморфны: аддитивная группа поля рациональных чисел, его мультипликтивная группа, группа положительных рациональных чисел (по умножению)?
  • доказать, что любая группа порядка 4 изоморфна либо Z_4 либо V_4;
  • ★ доказать, что любая группа порядка 6 изоморфна либо Z_6 либо S_3.

13 сентября 2021

Сопряжённость элементов в группе, классы сопряжённости, центр группы. Вычисление классов сопряженности и центра для групп Q_8, S_n, D_n.

Домашнее задание:
  • 57.29, 57.30б, 57.36, 58.20б, 58.23, 58.24агж.

20 сентября 2021

Нормальные подгруппы в группах S_3, S_4. Вычисление факторгрупп с помощью основной теоремы о гомоморфизмах.

Домашнее задание:
  • 58.3, 58.4б, 58.10★, 58.11а, 58.32де, 58.33где.

27 сентября 2021

Автоморфизмы групп, вычисление Aut(Aut(Aut Z_9)). Прямое произведение (прямая сумма) групп, примеры разложений и неразложимости групп в прямые произведения (прямые суммы).

Домашнее задание:
  • 57.40, 58.43, 60.2бвг, 60.5ав, 60.7, 60.8б, 60.12;
  • ★ доказать, что Aut(S_n)=Inn(S_n)≅S_n, кроме случаев n=2,6.

4 октября 2021

Конечно порождённые и не конечно порождённые абелевы группы, примеры. Структура конечно порождённых абелевых групп, её определение, исходя из представления группы в виде факторгруппы свободной группы по подгруппе, заданной набором порождающих элементов, приведением целочисленной матрицы координат порождающих элементов подгруппы к «диагональному» виду. Вычисление порядка элемента в конечно порождённой абелевой группе, представленной как факторгруппа свободной группы.

Домашнее задание:
  • 60.32, 60.50, 60.51, 60.52агд, 60.53, 60.54;
  • Являются ли конечно порождёнными следующие группы:
    1. группа рациональных дробей m/n, у которых простые делители n содержатся среди {p_1,…,p_s}, с операцией сложения;
    2. группа рациональных дробей m/n≠0, у которых простые делители m и n содержатся среди {p_1,…,p_s}, с операцией умножения;
  • доказать две формулы для объёма целочисленного n-мерного параллелепипеда П:
    1. vol(П) = число целых точек в П, не лежащих на его гранях, не содержащих данную вершину 0;
    2. vol(П) = ∑ (1/2^k)⋅(число целых точек внутри всех (n-k)-мерных граней П), где суммирование ведётся по k=0,1,…,n.

11 октября 2021

Конечные абелевы группы, их структура, тип группы. Классификация конечных абелевых групп заданного порядка. Определение типа факторгруппы конечной (или конечно порождённой) абелевой группы. Вложимость конечных абелевых групп друг в друга. Количество подгрупп заданного порядка в данной конечной абелевой группе.

Домашнее задание:
  • 60.39ежз, 60.40ав, 60.42, 60.43бв, 60.45.

18 октября 2021

Действия групп на множествах, описание орбит и стабилизаторов. В подгруппе индекса n содержится нормальная подгруппа индекса, делящего n!. Пять правильных многогранников (платоновы тела), двойственность между ними. Группы движений двойственных многогранников совпадают.

Домашнее задание:
  • 57.1абв, 57.2а, 57.3, 57.9бв, 57.12в, 57.13ав★, 58.37.

1 ноября 2021

Теоретико-групповое определение и классификация правильных многогранников. Формула Бернсайда для числа орбит действия конечной группы на конечном множестве. Действие группы на себе сопряжениями: классы сопряжённости и централизаторы, число элементов в классе сопряжённости, формула классов.

Домашнее задание:
  • 57.23б, 57.25, 57.31, 58.44;
  • сколько существует различных игральных костей? (игральная кость — это кубик, на каждой грани которого написана цифра от 1 до 6, причём цифры могут повторяться);
  • доказать формулу Эйлера для правильного многогранника с помощью формулы Бернсайда.

8 ноября 2021

Коммутант группы, его свойства. Вычисление коммутанта группы G методом оценки сверху (ядро гомоморфизма G в абелеву группу) и снизу (подгруппа, порождённая некоторым количеством коммутаторов). Кратные коммутанты, разрешимые группы, критерий разрешимости (в терминах подгруппы и факторгруппы).

Домашнее задание:
  • 62.7г, 62.8б, 62.11в, 62.13, 62.15, 58.38;
  • доказать, что -E не является коммутатором в группе SL_2(R);
  • вычислить производный ряд для группы, состоящей из невырожденных действительных матриц вида