Различия
Показаны различия между двумя версиями страницы.
Следующая версия | Предыдущая версия | ||
seminars_graphs_20_21 [28.09.2021 15:22] guterman создано |
seminars_graphs_20_21 [08.04.2025 16:43] (текущий) |
||
---|---|---|---|
Строка 9: | Строка 9: | ||
---- | ---- | ||
+ | **02.06.2021** | ||
+ | |||
+ | 1. А Ватузов, | ||
+ | |||
+ | 2. Г.Б. Шабат, О dessins d’un vieillard | ||
+ | |||
+ | **26.05.2021** | ||
+ | |||
+ | 1. А. Моляков, | ||
+ | |||
+ | 2. О. Шувалова, | ||
+ | |||
+ | 3. А. Ватузов, | ||
+ | |||
+ | **19.05.2021** | ||
+ | |||
+ | John Voight (Department of Mathematics, | ||
+ | Computing Belyi maps: a survey | ||
+ | |||
+ | Abstract: We will survey methods to compute Belyi maps, including some | ||
+ | recent developments. | ||
+ | |||
+ | **12.05.2021** | ||
+ | |||
+ | Г.Б. Шабат, Об одном пучке симметричных секстик | ||
+ | |||
+ | **05.05.2021** | ||
+ | |||
+ | A. K. Zvonkin (Bordeaux), In praise of the Bateman-Horn conjecture | ||
+ | |||
+ | Joint work with Gareth Jones, with computational assistance from Jean Bétréma | ||
+ | |||
+ | Let there be a set of polynomials $f_1, | ||
+ | |||
+ | For example: | ||
+ | |||
+ | (1) when there is only one polynomial $f_1(t)=t$, the answer is given by the Prime Number Theorem (Hadamard and de la Vallée Poussin, 1896); | ||
+ | |||
+ | (2) when there is still one polynomial $f_1(t)=at+b$, | ||
+ | |||
+ | (3) when there are two polynomials $f_1(t)=t$ and $f_2(t)=t+2$, | ||
+ | |||
+ | (4) a question which is also in this framework: are there infinitely many projective groups of prime degree? | ||
+ | |||
+ | The Bateman-Horn conjecture predicts, with an astonishing accuracy, the number of the " | ||
+ | The talk will be given in a mixed Russian-Western style. Namely: | ||
+ | |||
+ | (1) the slides will be in English; | ||
+ | |||
+ | (2) the talk itself will be in English; | ||
+ | |||
+ | (3) but the duration of the talk may turn out to be significantly longer than a polite one hour. | ||
+ | |||
+ | **28.04.2021** | ||
+ | |||
+ | G. B. Shabat, Three facets of dessins d' | ||
+ | |||
+ | As everybody knows, the 3-points theorem proved by Belyi in 1978 enriched Grothendieck' | ||
+ | I am going to give an overview of the development of this theory during the recent decades, concentrating on the interactions between the algebro-geometric, | ||
+ | |||
+ | **21.04.2021** | ||
+ | |||
+ | 1. Ю. Ю. Кочетков (НИУ ВШЭ), Парадокс Банаха-Тарского | ||
+ | |||
+ | 2. Ю. Ю. Кочетков (НИУ ВШЭ), Об одной динамической системе на пространстве выпуклых четырехугольников | ||
+ | |||
+ | **14.04.2021** | ||
+ | |||
+ | Г.Р. Челноков (НИУ ВШЭ), Перечисление | ||
+ | |||
+ | **07.04.2021** | ||
+ | |||
+ | M. Skopenkov (NRU HSE, IITP RAS), Discrete complex analysis: convergence results | ||
+ | |||
+ | |||
+ | Various discretizations of complex analysis have been actively studied since the 1920s because of applications to numerical analysis, statistical physics, and integrable systems. This talk concerns complex analysis on quadrilateral lattices tracing back to the works of J. Ferrand, R. Isaacs, R. Duffin. | ||
+ | |||
+ | We solve a problem by S.K. Smirnov from 2010 on the convergence of discrete harmonic functions on planar nonrhombic lattices to their continuous counterparts under lattice refinement. This generalizes the results of R.Courant-K.Friedrichs-H.Lewy, | ||
+ | |||
+ | We also prove convergence of discrete period matrices and discrete Abelian integrals to their continuous counterparts (this is a joint work with A.I. Bobenko). The proofs are based on energy estimates inspired by electrical network theory. | ||
+ | |||
+ | **31.03.2021** | ||
+ | |||
+ | 1. Ю.Ю. Кочетков, | ||
+ | |||
+ | 2. А.Р. Моляков, | ||
+ | |||
+ | 3. Разное. | ||
+ | |||
+ | **24.03.2021** | ||
+ | |||
+ | 1. Г.Б. Шабат, О семействах торических рисунков; | ||
+ | |||
+ | 2. Разное. | ||
+ | |||
+ | **17.03.2021** | ||
+ | |||
+ | 1. Ф.Б. Пакович (Ben Gurion University of Negev), Об уравнении A(X)=A(Y) | ||
+ | |||
+ | 2. Н.М. Адрианов, | ||
+ | |||
+ | **10.03.2021** | ||
+ | |||
+ | Н.М. Адрианов, | ||
+ | |||
+ | **03.03.2021** | ||
+ | |||
+ | Н.М. Адрианов, | ||
+ | |||
+ | **24.02.2021** | ||
+ | |||
+ | 1. Г.Б. Шабат, О парах Белого рода 2. | ||
+ | |||
+ | 2. Н.Я. Амбург, | ||
+ | |||
+ | **17.02.2021** | ||
+ | |||
+ | 1. Г.Б. Шабат, Эллипсы и эллиптические кривые. | ||
+ | |||
+ | 2. Как мы провели зимние каникулы. | ||
+ | |||
+ | 3. Разное. | ||
+ | |||
+ | **02.12.2020** | ||
+ | |||
+ | Anton Zorich, University of Paris, Square-tiled surfaces, Masur-Veech volumes and count of meanders. | ||
+ | |||
+ | (joint work with V. Delecroix, E. Goujard and P. Zograf) | ||
+ | |||
+ | I will introduce square-tiled surfaces and explain why they | ||
+ | represent integer points in the moduli spaces of Abelian and | ||
+ | quadratic differentials. I will also explain why count of | ||
+ | square-tiled surfaces provides Masur-Veech volumes of these moduli | ||
+ | spaces. | ||
+ | |||
+ | To justify my interest to count of square-tiled surfaces I will | ||
+ | show how it allows to count meanders. The results are obtained | ||
+ | jointly with V. Delecroix, E. Goujard, P. Zograf. | ||
+ | |||
+ | **25.11.2020** | ||
+ | |||
+ | 1. А. Моляков, | ||
+ | |||
+ | 2. Н.М. Адрианов, | ||
+ | |||
+ | 3. Разное | ||
+ | |||
+ | **18.11.2020** | ||
+ | |||
+ | Andrei Bogatyrev (Institute of Numerical Mathematics), | ||
+ | |||
+ | Abstract: | ||
+ | We consider the cell decomposition of the moduli space of real genus | ||
+ | two curves with a marked point on the only real oval. The cells are | ||
+ | enumerated by certain graphs with their weights describing the complex | ||
+ | structure on a curve. We show that collapse of an edge of the graph | ||
+ | results in a root like singularity of the natural mapping from the | ||
+ | graph weights to the moduli space of curves. | ||
+ | |||
+ | **11.11.2020** | ||
+ | |||
+ | 1. Елизавета Бриль (НИУ ВШЭ), Многочлен Татта -- вовсе не Галуа-инвариант! | ||
+ | |||
+ | 2. Н.М. Адрианов, | ||
+ | |||
+ | 3. Разное. | ||
+ | |||
+ | **04.11.2020** | ||
+ | |||
+ | George Shabat, Dessins d' | ||
+ | |||
+ | Abstract: | ||
+ | There are several ways to introduce such metrics: using Strebel differentials, | ||
+ | etc. The talk will contain an overview of these structures and their relation with desssins d' | ||
+ | |||
+ | According to an old result of the speaker and Voevodsky, a Riemann surface admits a conformal structure, | ||
+ | defined by an equilateral triangulation, | ||
+ | over the field of the algebraic numbers. The similar result where the equilateral triangles are replaced | ||
+ | by squares, will be presented. As the corresponding dessins d' | ||
+ | arise. | ||
+ | |||
+ | Hopefully, soon we'll have a talk by Anton Zorich concerning the statistics of the square-tiled surfaces. | ||
+ | It is possible that the relations with the distribution of sizes of their Galois orbits will be found. | ||
+ | |||
+ | **28.10.20** | ||
+ | |||
+ | 1. Г.Б. Шабат, Применение производной Шварца для вычислений функций Белого (продолжение) | ||
+ | |||
+ | 2. Н.М. Адрианов, | ||
+ | |||
+ | **21.10.20** | ||
+ | |||
+ | 1. Н.Я. Амбург, | ||
+ | |||
+ | 2. Г.Б. Шабат, Применение производной Шварца для вычислений функций Белого | ||
+ | |||
+ | 3. Разное. | ||
+ | |||
+ | **14.10.20** | ||
+ | |||
+ | 1. Н.А. Амбург, | ||
+ | |||
+ | 2. Н.М. Адрианов, | ||
+ | |||
+ | **07.10.2020** | ||
+ | |||
+ | Natalia Amburg (ITEP, HSE), Elena Kreines (MSU, ITEP), Belyi pair of the cell decomposition of oriented covering of the Deligne-Mumford compactification for M^R_{0,5} | ||
+ | |||
+ | Abstract: We consider the Deligne-Mamford compactification of the moduli space of genus 0 real algebraic curves with 5 marked and numbered points and its orienting covering. The second one is a surface. So, standard cell decomposition of the original moduli space provides a dessin d' | ||
+ | |||
+ | **30.09.2020** | ||
+ | |||
+ | 1. Г.Б. Шабат, Семейства Фрида и география алгебраических поверхностей | ||
+ | |||
+ | 2. Н.М. Адрианов, | ||
+ | |||
+ | 3. Разное. | ||
+ | |||
+ | **23.09.2020** | ||
+ | |||
+ | 1. П. Мартынюк, | ||
+ | |||
+ | 2. Н.М. Адрианов, | ||
+ | |||
+ | **16.09.2020** | ||
+ | |||
+ | Petr Dunin-Barkowski (HSE), Review of topological recursion, | ||
+ | quasi-polynomiality and rationality results for various types of | ||
+ | Hurwitz numbers | ||
+ | |||
+ | Abstract: | ||
+ | We review results on spectral curve, topological recursion, | ||
+ | quasi-polynomiality and rationality for various types of Hurwitz | ||
+ | numbers, including simple, monotone, and r-spin Hurwitz numbers, | ||
+ | Bousquet-Mélou--Schaeffer numbers, coefficients of Ooguri-Vafa | ||
+ | partition functions for colored HOMFLY polynomials of knots, etc. | ||
+ | |||
+ | **09.09.2020** | ||
+ | |||
+ | 1. К.Т. Гадахабадзе (НИУ ВШЭ), Изображение алгебраических чисел вершинами плоских деревьев | ||
+ | |||
+ | 2. Ю.Ю. Кочетков | ||
+ | |||
+ | 3. Н.М. Адрианов (МГУ), Введение в теорию Галуа-Тайхмюллера | ||
+ | |||
+ | **02.09.2020** | ||
+ | |||
+ | |||
+ | Ilya Mednykh and Liliya Grunwald (Sobolev Institute of Mathematics, | ||
+ | |||
+ | Abstract: | ||
+ | In this talk, we develop a new method to produce explicit formulas for the number fG(n) of rooted spanning forests in the circulant graphs G = Cn(s1, s2, . . . , sk) and G = C2n(s1, s2, . . . , sk, n). These formulas are expressed through Chebyshev polynomials. We prove that in both cases the number of rooted spanning forests can be represented in the form fG(n) = p a(n)2, where a(n) is an integer sequence and p is a prescribed natural number depending on the parity of n. Finally, we find an asymptotic formula for fG(n) through the Mahler measure of the associated Laurent polynomial. | ||