Различия

Показаны различия между двумя версиями страницы.

Ссылка на это сравнение

Предыдущая версия справа и слева Предыдущая версия
Следующая версия
Предыдущая версия
лекции_1_курс_1_поток_осень_2016 [01.12.2016 18:50]
timashev
лекции_1_курс_1_поток_осень_2016 [08.04.2025 16:43] (текущий)
Строка 275: Строка 275:
 Кольцо K[x_1,...,x_n] __многочленов от нескольких переменных__ над ассоциативным коммутативным кольцом K с единицей: аксиоматическое определение, единственность с точностью до изоморфизма, индуктивное построение. Кольцо K[x_1,...,x_n] __многочленов от нескольких переменных__ над ассоциативным коммутативным кольцом K с единицей: аксиоматическое определение, единственность с точностью до изоморфизма, индуктивное построение.
  
 +----
 +
 +=== 5 декабря 2016 ===
 +
 +== Лекция 21 ==
 +
 +Полиномиальные функции от нескольких переменных. Эквивалентность формального и функционального равенства многочленов от нескольких переменных над бесконечным полем.
 +
 +Степень одночлена и многочлена (полная и по отдельным переменным), __однородные многочлены__, разложение многочлена в сумму однородных компонент.
 +
 +__Лексикографический порядок__ на одночленах, его свойства. __Старший член__ ненулевого многочлена. Старший член произведения многочленов над целостным кольцом K, целостность кольца K[x_1,...,x_n].
 +
 +Многочлены от одной переменной над факториальным кольцом A, __примитивные многочлены__, лемма Гаусса. Факториальность кольца многочленов A[x], факториальность колец **Z**[x] и K[x_1,...,x_n], где K — поле.
 +
 +----
 +
 +=== 12 декабря 2016 ===
 +
 +== Лекция 22 ==
 +
 +__Симметрические многочлены__: определение и примеры. Степенные суммы и элементарные симметрические многочлены. 
 +
 +Теорема Виета: выражение значений элементарных симметрических многочленов на корнях многочлена от одной переменной через его коэффициенты. 
 +
 +Основная теорема о симметрических многочленах: существование и единственность выражения произвольного симметрического многочлена через элементарные симметрические многочлены.
 +
 +Выражение значения симметрического многочлена на корнях многочлена от одной переменной через его коэффициенты.
 +
 +__Дискриминант__ многочлена от одной переменной, его основное свойство: дискриминант равен 0 тогда и только тогда, когда многочлен имеет кратные корни. Вычисление дискриминанта через определитель из степенных сумм корней многочлена.
 +
 +----
 +
 +=== 14 декабря 2016 ===
 +
 +== Лекция 23 ==
 +
 +Инвариантность дискриминанта относительно сдвига переменной на константу, сведение к дискриминанту неполного многочлена. Дискриминант неполного кубического трёхчлена, его связь с количеством вещественных корней.
 +
 +__Результант__ двух многочленов от одной переменной, его свойства, вычисление результанта через определитель из коэффициентов многочленов. Связь дискриминанта многочлена c результантом многочлена и его производной.
 +
 +Возведение элемента группы в целую степень, свойства степени.
 +
 +----
 +
 +=== 19 декабря 2016 ===
 +
 +== Лекция 24 ==
 +
 +__Порядок__ элемента группы, его свойства. Пример: порядок подстановки.
 +
 +Циклическая подгруппа, порождённая элементом группы, __циклические группы__, примеры: аддитивные группы колец **Z** и **Z**_m. Порядок циклической группы, все циклические группы одного порядка изоморфны (пример: группа комплексных корней степени m из 1 изоморфна **Z**_m). Описание подгрупп циклической группы.
 +
 +Смежность элементов группы G слева по подгруппе H — отношение эквивалентности. Левые __смежные классы__ в G по H, __индекс__ подгруппы. Пример: смежность и смежные классы в **Z** по m**Z**. Смежность справа и правые смежные классы. 
 +
 +__Теорема Лагранжа__ о подгруппах в конечных группах и её следствия: порядок подгруппы и порядок элемента делят порядок группы, тождество g^n=e в группе порядка n. Теорема Эйлера о вычетах.