Это старая версия документа!
Лекции по алгебре 241 группа. Лектор Аржанцев Иван Владимирович
2021/2022 учебный год
Лекции проходят по вторникам в 9:00 и по четвергам нечётных недель в 9:00.
19.10.2021. Лекция 11.
14.10.2021. Лекция 10. Простота группы A_n при n>4 (завершение доказательства). Общие сведения о классификации конечных простых групп. Действие группы на множестве, орбиты и стабилизаторы, транзитивные, свободные и эффективные действия, ядро неэффективности, примеры действий,
12.10.2021. Лекция 9. Основные примеры и свойства разрешимых групп. Производный ряд. Разрешимость группы верхнетреугольных матриц. Простые группы. Существование композиционного ряда. Расширения групп. Абелевы простые группы. Простота группы A_n при n>4 (начали доказывать).
05.10.2021. Лекция 8. Коммутатор элементов. Коммутант группы и его свойства. Характеристические подгруппы. Коммутанты групп S_n, A_n, D_n, SL_n(F) и GL_n(F). Кратные коммутанты, их характеристичность и нормальность. Разрешимые группы.
30.09.2021. Лекция 7. Единственность разложения конечной абелевой группы в прямую сумму примарных циклических. Экспонента конечной группы. Конечная подгруппа мультипликативной группы поля циклическая. Единственность разложения конечно порожденной абелевой группы. Порождающие элементы. Группа A_n порождена тройными циклами и произведениями пар независимых транспозиций (n>4). Порождающие группы D_n. Группа GL_n(F) порождена элементарными матрицами, а группа SL_n(F) – элементарными матрицами первого типа.
28.09.2021. Лекция 6. Приведение целочисленной матрицы к диагональному виду. Теорема о согласованных базисах. Факторгруппы свободных абелевых групп. Универсальное свойство свободной абелевой группы. Разложение конечно порожденной абелевой группы в прямую сумму циклических. Классификация конечных абелевых групп.
21.09.2021. Лекция 5. Абелевы группы: периодическая часть, группы без кручения, конечно порожденные и свободные группы. Базис и ранг свободной абелевой группы, матрица перехода. Подгруппа свободной абелевой группы ранга n свободна и ее ранг не превосходит n.
16.09.2021. Лекция 4. Классы сопряженности в группах S_n, D_n и GL_n(C). Внешние и внутренние прямые произведения групп. Факторизация по сомножителям. Разложение конечной циклической группы.
14.09.2021. Лекция 3. Теорема о гомоморфизме (доказательство). Примеры применения теоремы о гомоморфизме. Группа автоморфизмов Aut(G). Вычисление групп автоморфизмов циклических групп. Группа внутренних автоморфизмов Inn(G). Центр группы. Классы сопряженности, централизатор элемента, формула для числа элементов в классе сопряженности
07.09.2021. Лекция 2. Криптография с открытым ключом. Задача дискретного логарифмирования и метод повторного возведения в квадрат. Система Диффи-Хеллмана обмена ключами. Криптосистема Эль-Гамаля. Смежные классы, индекс подгруппы, теорема Лагранжа и пять следствий из нее. Нормальные подгруппы, факторгруппы, теорема о гомоморфизме (формулировка)
02.09.2021. Лекция 1. Группа, подгруппа, гомоморфизм, изоморфизм и автоморфизм. Примеры групп: числовые (аддитивные и мультипликативные), вычеты, группы подстановок, группы матриц, группы симметрий, группа диэдра D_n, группа кватернионов Q_8. Циклические подгруппы и порядок элемента. Циклические группы и их классификация. Подгруппы циклических групп.