Различия
Показаны различия между двумя версиями страницы.
| Предыдущая версия справа и слева
Предыдущая версия
Следующая версия
|
Предыдущая версия
|
лекции_2_курс_1_поток_осень_2017 [08.12.2017 21:22] timashev |
лекции_2_курс_1_поток_осень_2017 [08.04.2025 16:43] (текущий) |
| |
| K[x_1,…,x_n] не является кольцом главных идеалов при n>1. Факторалгебры K[x]/(f), их структура и свойства. Подстановка элемента ассоциативной алгебры с 1 в многочлен, подалгебра, порождённая элементом. __Алгебраические__ и __трансцендентные__ элементы алгебры, __минимальный многочлен__ алгебраического элемента: примеры и свойства. __Присоединение корня__ неприводимого многочлена к полю. | K[x_1,…,x_n] не является кольцом главных идеалов при n>1. Факторалгебры K[x]/(f), их структура и свойства. Подстановка элемента ассоциативной алгебры с 1 в многочлен, подалгебра, порождённая элементом. __Алгебраические__ и __трансцендентные__ элементы алгебры, __минимальный многочлен__ алгебраического элемента: примеры и свойства. __Присоединение корня__ неприводимого многочлена к полю. |
| | |
| | === 11 декабря 2017 === |
| | |
| | == Лекция 21 == |
| | |
| | Конечные и конечно порождённые расширения полей, степень расширения. Теорема о башне расширений. __Алгебраическое замыкание__ поля в его расширении. Поле (всех) __алгебраических чисел__, его мощность, существование __трансцендентных чисел__. __Поле разложения__ многочлена, его существование и единственность с точностью до изоморфизма. |
| | |
| | === 14 декабря 2017 === |
| | |
| | == Лекция 22 == |
| | |
| | __Простые поля__, их структура, простое подполе данного поля. |
| | |
| | Порядок конечного поля. __Автоморфизм Фробениуса__. Классификация конечных полей (__полей Галуа__). Построение произвольного поля Галуа присоединением к полю **Z**_p корня неприводимого многочлена. Пример: построение поля из 4 элементов. |
| | |
| | === 18 декабря 2017 === |
| | |
| | == Лекция 23 == |
| | |
| | Вложения конечных полей. |
| | |
| | Конечномерные алгебры с делением, случай алгебраически замкнутого поля. __Центр__ кольца и алгебры. __Центральные алгебры__, примеры: алгебра матриц, алгебра кватернионов. __Теорема Фробениуса__ о конечномерных алгебрах с делением над **R**. |