Кафедра высшей алгебры

Вы посетили: » лекции_2_курс_1_поток_осень_2019



      

Лекции по алгебре, 2 курс, 1 поток

Лектор: Д.А. Тимашёв

Лекции проходят по понедельникам на 1-й паре (9:00-10:35) в ауд. П3 и по пятницам на каждой нечётной неделе на 1-й паре (9:00-10:35) в ауд. П12.

Литература
  1. А.И. Кострикин. Введение в алгебру.
    • Часть I. Основы алгебры. Глава 4.
    • Часть III. Основные структуры алгебры.
  2. Э.Б. Винберг. Курс алгебры. Главы 1, 4, 9–11.

2 сентября 2019

Лекция 1

Группы (напоминание из 1-го семестра): определение, абелевы группы, мультипликативная и аддитивная терминологии. Примеры групп: аддитивные и мультипликативные группы колец и полей, матричные и линейные группы, группы движений (в т.ч. группа диэдра D_n), группы преобразований множеств (в т.ч. симметрическая группа S_n и знакопеременная группа A_n).

Гомоморфизм групп, примеры и простейшие свойства. Изоморфизм = биективный гомоморфизм. Изоморфные группы одинаковы по своим теоретико-групповым свойствам.


6 сентября 2019

Лекция 2

Примеры изоморфных и неизоморфных групп.

Подгруппы: определение и примеры. Циклические (под)группы и их свойства: порядок циклической группы, изоморфизм циклических групп одного порядка, подгруппы циклических групп.

Смежные классы по подгруппе (левые и правые), их свойства. Теорема Лагранжа и её следствия: порядок подгруппы и порядок элемента делят порядок группы, тождество g^n=e в группе порядка n, цикличность групп простого порядка.

Нормальные подгруппы, их эквивалентные определения. Факторгруппа G/H группы G по нормальной подгруппе H, пример: Z/mZ=Z_m.

Образ Imφ и ядро Kerφ гомоморфизма групп φ:G→H, их свойства, примеры. Каноническая проекция группы на факторгруппу, нормальные подгруппы = ядра гомоморфизмов.


9 сентября 2019

Лекция 3

Основная теорема о гомоморфизмах групп (изоморфизм между G/Kerφ и Imφ, задаваемый гомоморфизмом φ).

Вычисление факторгрупп с помощью основной теоремы о гомоморфизмах, примеры: R/ZU (единичная окружность), S_n/A_n, GL_n(K)/SL_n(K), Z/mZU_m (корни степени m из 1), C*/U.

Произведение подгрупп, одна из которых нормальна, его факторизация по нормальному множителю.

Эндоморфизмы и автоморфизмы групп, группа автоморфизмов Aut G, её описание для циклических групп G. Внутренние автоморфизмы, гомоморфизм G → Aut G, его образ — нормальная подгруппа внутренних автоморфизмов Inn G, и ядро Z(G) — центр группы G. Если G неабелева, то группа Inn G — не циклическая.


16 сентября 2019

Лекция 4

Разложение группы в прямое произведение (внутреннее) двух подгрупп. Свойства внутреннего прямого произведения: перестановочность сомножителей, единственность разложения по сомножителям, покомпонентное перемножение разложений. Внешнее прямое произведение двух групп, его эквивалентность внутреннему. Прямая сумма (абелевых) групп. Примеры: разложение аддитивной и мультипликативной групп поля C.

Обобщение прямого произведения (прямой суммы) групп на случай нескольких сомножителей (слагаемых). Порядок прямого произведения конечных групп. Китайская теорема об остатках в классической и теоретико-групповой формулировке: Z_m ≅ Z_{m_1} ⊕ … ⊕ Z_{m_s} для разложения m=m_1·…·m_s в произведение попарно взаимно простых сомножителей. Разложение циклической группы в прямую сумму примарных циклических групп. Факторизация прямого произведения групп по прямому произведению подгрупп, в частности, по прямым сомножителям.

Подгруппа, порождённая семейством элементов группы (наименьшая подгруппа, содержащая семейство), описание её элементов.


20 сентября 2019

Лекция 5

Примеры систем порождающих в группах: S_n (транспозиции), A_n (тройные циклы при n≥3 и пары независимых транспозиций при n≥5), GL_n (элементарные матрицы), SL_n (элементарные матрицы 1-го типа).

Конечно порождённые абелевы группы (в аддитивной записи), (целочисленные) линейные комбинации элементов абелевой группы, линейная зависимость, базисы. Свободные абелевы группы. Основная лемма о линейной зависимости для абелевых групп. Во всех базисах свободной абелевой группы одинаковое число элементов — ранг группы. Изоморфизм свободных абелевых групп одного ранга. Подгруппы свободных абелевых групп. Дискретные подгруппы евклидовых пространств.


23 сентября 2019

Лекция 6

Доказательство теоремы о том, что дискретная подгруппа в евклидовом пространстве свободна.

Теорема о базисе свободной абелевой группы, согласованном с подгруппой (доказательство основано на лемме о приведении целочисленной матрицы к «диагональному» виду целочисленными элементарными преобразованиями строк и столбцов). Универсальное свойство свободной абелевой группы.

Структура конечно порождённых абелевых групп (формулировка теоремы): разложение в прямую сумму бесконечных и примарных циклических групп, единственность вида разложения (ранг и тип кручения). Структура конечных абелевых групп.


30 сентября 2019

Лекция 7

Примеры различных разложений данной группы в прямую сумму бесконечных и примарных циклических подгрупп. Доказательство теоремы о структуре конечно порождённых абелевых групп.

Экспонента группы, проблема Бернсайда. Определение экспоненты конечной абелевой группы по её разложению в прямую сумму циклических групп, критерий цикличности конечной абелевой группы: экспонента совпадает с порядком группы. Цикличность конечной подгруппы в мультипликативной группе поля, в частности, мультипликативной группы конечного поля.


4 октября 2019

Лекция 8

Действие группы G на множестве X: два эквивалентных определения (гомоморфизм G → S(X) и операция действия G×X → X с определёнными свойствами). Примеры действий, в т.ч. действия группы на себе левыми/правыми умножениями и сопряжениями. Теорема Кэли. Ядро неэффективности и эффективные действия, сведение любого действия к эффективному.

Эквивалентность на множестве, определяемая действием группы. Орбиты, транзитивные действия. Стабилизаторы точек, сопряжённость стабилизаторов эквивалентных точек. Взаимно однозначное соответствие между точками орбиты и смежными классами по стабилизатору, число точек в орбите.

Группа вращений куба: её порядок (из транзитивного действия на вершинах куба) и изоморфизм с S_4 (из действия на диагоналях).


7 октября 2019

Лекция 9

Эпиморфизм S_4 → S_3 (из действия группы вращений куба на прямых, соединяющих центры противоположных граней куба).

Действие группы на себе сопряжениями, классы сопряжённости и централизаторы, примеры: классы сопряжённости и центры групп GL_n и S_n. Число элементов в классе сопряжённости, формула классов.

Нетривиальность центра конечной p-группы, коммутативность и классификация групп порядка p² (p — простое число).

Коммутатор элементов группы, его свойства.


14 октября 2019

Лекция 10

Коммутант (производная группа) [G,G]=G' группы G, его свойства (в частности, G' — наименьшая нормальная подгруппа в G с абелевой факторгруппой). Коммутанты групп S_n и A_n. Коммутанты групп GL_n(K) и SL_n(K) при n≥3 и при n=2 для достаточно большого поля K.

Кратные коммутанты, их свойства, характеристические подгруппы. Производный ряд, разрешимые группы, ступень (класс) разрешимости. Критерий разрешимости группы: нормальная подгруппа и факторгруппа по ней разрешимы.

Разрешимость группы S_n при n≤4 и неразрешимость при n≥5. Происхождение понятия и термина «разрешимая группа»: проблема разрешимости уравнений в радикалах. Выразимость корней любого многочлена степени n в радикалах через его коэффициенты равносильна разрешимости группы S_n (без доказательства).

Неразрешимость групп GL_n(K) и SL_n(K) при n≥3 или |K|≥4. Разрешимость конечных p-групп.