Различия
Показаны различия между двумя версиями страницы.
Предыдущая версия справа и слева Предыдущая версия Следующая версия | Предыдущая версия | ||
лекции_2_курс_1_поток_осень_2019 [11.11.2021 09:52] timashev |
лекции_2_курс_1_поток_осень_2019 [08.04.2025 16:43] (текущий) |
||
---|---|---|---|
Строка 216: | Строка 216: | ||
Описание неприводимых представлений групп S_3 и S_4. __Пример модельной задачи__ на применение теории представлений: | Описание неприводимых представлений групп S_3 и S_4. __Пример модельной задачи__ на применение теории представлений: | ||
+ | |||
+ | ---- | ||
=== 25 ноября 2019 === | === 25 ноября 2019 === | ||
Строка 224: | Строка 226: | ||
__Идеалы__ в кольцах и алгебрах (левые, | __Идеалы__ в кольцах и алгебрах (левые, | ||
+ | |||
+ | ---- | ||
=== 29 ноября 2019 === | === 29 ноября 2019 === | ||
Строка 236: | Строка 240: | ||
Идеал коммутативного ассоциативного кольца (алгебры) с 1, порождённый семейством элементов. Конечно порождённые идеалы, | Идеал коммутативного ассоциативного кольца (алгебры) с 1, порождённый семейством элементов. Конечно порождённые идеалы, | ||
+ | |||
+ | ---- | ||
=== 9 декабря 2019 === | === 9 декабря 2019 === | ||
Строка 242: | Строка 248: | ||
Факторалгебры K[x]/(f), их структура и свойства. Подстановка элемента ассоциативной алгебры с 1 в многочлен, | Факторалгебры K[x]/(f), их структура и свойства. Подстановка элемента ассоциативной алгебры с 1 в многочлен, | ||
+ | |||
+ | ---- | ||
=== 13 декабря 2019 === | === 13 декабря 2019 === | ||
Строка 248: | Строка 256: | ||
Конечные и конечно порождённые расширения полей, степень расширения. Теорема о башне расширений. __Алгебраическое замыкание__ поля в его расширении. Поле (всех) __алгебраических чисел__, | Конечные и конечно порождённые расширения полей, степень расширения. Теорема о башне расширений. __Алгебраическое замыкание__ поля в его расширении. Поле (всех) __алгебраических чисел__, | ||
+ | |||
+ | ---- | ||
=== 16 декабря 2019 === | === 16 декабря 2019 === | ||
Строка 256: | Строка 266: | ||
Порядок конечного поля. __Эндоморфизм Фробениуса__. Классификация конечных полей (__полей Галуа__). Построение произвольного поля Галуа присоединением к полю **Z**_p корня неприводимого многочлена. Пример: | Порядок конечного поля. __Эндоморфизм Фробениуса__. Классификация конечных полей (__полей Галуа__). Построение произвольного поля Галуа присоединением к полю **Z**_p корня неприводимого многочлена. Пример: | ||
+ | |||
+ | ---- | ||
=== 17 декабря 2019 === | === 17 декабря 2019 === |