Различия

Показаны различия между двумя версиями страницы.

Ссылка на это сравнение

Предыдущая версия справа и слева Предыдущая версия
Следующая версия
Предыдущая версия
лекции_2_курс_1_поток_осень_2024 [12.12.2024 17:10]
gordienko
лекции_2_курс_1_поток_осень_2024 [08.04.2025 16:43] (текущий)
Строка 93: Строка 93:
 22) **11.12.2024.** Поле GF(4). Автоморфизм Фробениуса. Группа автоморфизмов конечного поля. Критерий вложимости одного конечного поля в другое. Конечномерные алгебры с делением над полем комплексных чисел. Теорема Фробениуса об алгебрах с делением над полем вещественных чисел. Нильпотентные элементы. Ниль-кольца. Нильпотентные кольца. Алгебры Ли. Примеры. 22) **11.12.2024.** Поле GF(4). Автоморфизм Фробениуса. Группа автоморфизмов конечного поля. Критерий вложимости одного конечного поля в другое. Конечномерные алгебры с делением над полем комплексных чисел. Теорема Фробениуса об алгебрах с делением над полем вещественных чисел. Нильпотентные элементы. Ниль-кольца. Нильпотентные кольца. Алгебры Ли. Примеры.
  
 +23) **16.12.2024.** Антикоммутативность в случае поля характеристики 2.
  
-(продолжение следует)+__Упражнение:__ показать, что тождество Якоби эквивалентно правилу Лейбница. 
 + 
 +__Упражнение:__ показать, что алгебра Ли верхнетреугольных матриц разрешима, а строго верхнетреугольных матриц нильпотента. 
 + 
 +__Упражнение:__ вывести из правила Лейбница и антикоммутативности, что всякий одночлен степени n от элементов алгебры Ли является линейной комбинацией левонормированных длинных коммутаторов длины n. 
 + 
 +Понятие о группах Ли. Нильпотентные группы. Центральные ряды. Нижний центральный ряд. Верхний центральный ряд. Связь между ними. Критерий нильпотентности в терминах центральных рядов. Критерий нильпотентности в терминах факторгруппы по центру. Нильпотентность конечной p-группы.
  
 __Примечание.__ Упражнения со знаком * являются необязательными (хотя они могут быть и очень простыми). Прочие упражнения являются обязательными и входят в программу экзамена.  __Примечание.__ Упражнения со знаком * являются необязательными (хотя они могут быть и очень простыми). Прочие упражнения являются обязательными и входят в программу экзамена.