Это старая версия документа!


Основы теории Ли, 4 курс, поток ФММФ, 441 группа

Лектор: Д.А.Тимашёв

Лекции читаются по субботам на 3-й паре (12:30-14:05) а ауд. 13-06.

<fc #FF0000>Объявление:</fc> во вторник <fc #FF0000>5 декабря</fc> на 3-й паре (12:30-14:05) в ауд. 410 вместо семинара по курсу «Вариационное исчисление и оптимальное управление» пройдёт лекция по курсу «Основы теории Ли», а в субботу <fc #FF0000>16 декабря</fc> на 3-й паре (12:30-14:05) в ауд. 13-06 вместо лекции по курсу «Основы теории Ли» пройдёт семинар по курсу «Вариационное исчисление и оптимальное управление».

Литература:
  1. Э.Б. Винберг, А.Л. Онищик. Семинар по группам Ли и алгебраическим группам.
  2. Ж.-П. Серр. Алгебры Ли и группы Ли.
  3. Ф. Уорнер. Основы теории гладких многообразий и групп Ли.

2 сентября 2023

Лекция 1

Группы Ли (вещественные и комплексные): определение и простейшие примеры. Прямое произведение групп Ли. Подгруппы Ли, их задание уравнениями. Пример: O_n ⊂ GL_n. Подгруппа в группе Ли, являющаяся подмногообразием в окрестности единицы, есть подгруппа Ли. Замкнутость подгрупп Ли в объемлющей группе Ли. Связная группа Ли порождается (как абстрактная группа) любой окрестностью единицы.


9 сентября 2023

Лекция 2

Компоненты связности группы Ли, связная компонента единицы и группа компонент. Пример: компоненты связности группы O_n(R).

Основные понятия дифференциального исчисления на многообразиях (напоминание): касательные векторы и касательные пространства, дифференциалы отображений, цепное правило. Дифференцирование умножения и инверсии на группе Ли.


16 сентября 2023

Лекция 3

Линеаризация дифференцируемых отображений постоянного ранга. Векторные поля. Дифференциальные уравнения (автономные, 1-го порядка) на многообразиях, фазовые кривые и фазовые потоки. Действие диффеоморфизмов на дифференциально-геометрические объекты на многообразии (функции, векторные поля, и т.п.). Производная Ли вдоль векторного поля. Коммутатор векторных полей.


23 сентября 2023

Лекция 4

Правоинвариантные векторные поля на группе Ли, их фазовые потоки и однопараметрические подгруппы. Экспоненциальное отображение, его свойства, экспоненциальные координаты на группе Ли в окрестности единицы.

Присоединённое представление и касательная алгебра группы Ли, примеры: GL_n, абелевы группы Ли. Дифференциал гомоморфизма групп Ли (в единице) — гомоморфизм касательных алгебр. Касательная алгебра подгруппы Ли есть подалгебра касательной алгебры группы Ли. Касательная алгебра группы Ли есть алгебра Ли.


30 сентября 2023

Лекция 5

Функтор Ли. Связь гомоморфизма групп Ли с его дифференциалом через экспоненциальное отображение (формула φ • exp = exp • dφ), случай линейного представления (в частности, Ad • exp = exp • ad). Экспонента суммы коммутирующих элементов касательной алгебры Ли равна произведению экспонент слагаемых.

Одновременная линеаризация всех подгрупп Ли в экспоненциальных координатах. Связная подгруппа Ли восстанавливается по своей касательной алгебре Ли. Пересечение подгрупп Ли — подгруппа Ли, её касательная алгебра Ли — пересечение касательных алгебр этих подгрупп.

Линеаризация гомоморфизмов групп Ли в экспоненциальных координатах, восстановление гомоморфизма связной группы Ли по его дифференциалу. Ядро и образ гомоморфизма групп Ли, их размерности и касательные алгебры Ли (формулировка теоремы). Плотная обмотка тора.


7 октября 2023

Лекция 6

Ядро и образ гомоморфизма групп Ли, их размерности и касательные алгебры Ли. Прообраз подгруппы Ли при гомоморфизме, его касательная алгебра Ли.

Связь между линейным представлением группы Ли и его дифференциалом — линейным представлением алгебры Ли: инвариантные подпространства, подпредставления и факторпредставления, приводимость, неприводимость, полная приводимость. Сопряжённое представление, прямая сумма и тензорное произведение линейных представлений групп Ли, их дифференциалы — соответствующие конструкции над линейными представлениями алгебр Ли.


14 октября 2023

Лекция 7

Действия групп Ли на многообразиях, орбитные отображения, поля скоростей. Касательная алгебра группы Ли изоморфна алгебре Ли правоинвариантных векторных полей. Свойства орбит и стабилизаторов. Стабилизатор вектора в линейном представлении группы Ли, его касательная алгебра Ли.


21 октября 2023

Лекция 8

Группа Ли автоморфизмов и алгебра Ли дифференцирований конечномерной алгебры. Представление изотропии. Транзитивные действия групп Ли и однородные многообразия. Орбитное отображение группы Ли на однородное многообразие является локально тривиальным расслоением.


28 октября 2023

Лекция 9

Однородное многообразие группы Ли однозначно определяется стабилизатором базисной точки. Структура однородного многообразия на множестве левых смежных классов G/H группы Ли G по подгруппе Ли H. Представление изотропии на однородном многообразии, связь с присоединённым представлением. Нормальные подгруппы Ли и идеалы в касательной алгебре Ли. Структура группы Ли на факторгруппе G/H группы Ли G по нормальной подгруппе Ли H.


11 ноября 2023

Лекция 10

Касательная алгебра Ли факторгруппы Ли. Основная теорема о гомоморфизмах для групп Ли.

Фундаментальная группа, односвязные многообразия, универсальное накрытие (напоминания). Универсальная накрываюшая и фундаментальная группа связной группы Ли.


18 ноября 2023

Лекция 11

Общий подход к проблеме классификации связных групп Ли: классификация алгебр Ли, построение соответствующих односвязных групп Ли, описание связных групп Ли как факторгрупп односвязных групп Ли по дискретным центральным подгруппам. Классификация связных коммутативных групп Ли.

Годограф скорости движения точки по кривой на группе Ли. Существование и единственность кривой с заданным годографом скорости, проходящей через заданную точку в начальный момент времени. Деформация кривой на группе Ли, дифференциальное уравнение деформации.