Это старая версия документа!


Семинары, 204 группа

Преподаватель: Д.А. Тимашёв

Занятия проходят по понедельникам на 2-й паре (10:45-12:20) в ауд. 454.

Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И. Кострикина, 3-е изд., Москва, Физматлит, 2001. Дополнительные задачи помечены знаком ★.


4 сентября 2017

Единственность нейтрального и обратного элементов в группе. Задание конечных групп таблицей умножения, примеры: группа Клейна V_4, группа кватернионов Q_8. Примеры изоморфных и неизоморфных групп: аддитивная и мультипликативная группы поля R, а также группа положительных вещественных чисел по умножению; Z_4 и V_4; GL_2(C) и GL_3(C). Сопряжённость элементов в группе. Порядки сопряжённых элементов совпадают. Классификация конечных групп порядка ≤10 (формулировка, для групп порядка 4 доказано).

Домашнее задание:
  • 55.25абг, 55.26, 56.7в, 56.10, 56.15аге, 55.16, 56.28;
  • доказать, что множество G с ассоциативной операцией, в котором есть правая единица (элемент e со свойством g·e=g, ∀g∈G) и правый обратный для каждого g∈G (элемент g' со свойством g·g'=e), является группой;
  • какие из групп изоморфны: аддитивная группа поля рациональных чисел, его мультипликтивная группа, группа положительных рациональных чисел (по умножению)?
  • ★ доказать, что любая группа порядка 6 изоморфна либо Z_6 либо S_3.

11 сентября 2017

Сопряжённость элементов в группе, классы сопряжённости, центр группы. Вычисление классов сопряженности и центра для групп Q_8, S_n, D_n. Нормальные подгруппы в группе S_3.

Домашнее задание:
  • 57.30б, 57.36, 58.3, 58.4бв, 58.10★, 58.11а, 58.19б, 58.22, 58.23агж.

18 сентября 2017

Сопряжённость в группе A_n. Вычисление факторгрупп непосредственно и с помощью основной теоремы о гомоморфизмах. Автоморфизмы групп, вычисление Aut(Aut(Aut Z_9)).

Домашнее задание:
  • 58.31де, 58.32ге, 58.42, 57.39а, 57.40, 57.41б, 57.43★, 57.44★.

25 сентября 2017

Прямое произведение (прямая сумма) групп, примеры разложений и неразложимости групп в прямые произведения (прямые суммы). Полупрямое произведение групп, примеры.

Домашнее задание:
  • 60.2бвг, 60.5ав, 60.7, 60.8б, 60.12;
  • какие из групп в задаче 60.2 разложимы (нетривиальным образом) в полупрямое произведение?
  • разложить в полупрямое произведение группы: а) GL_n(K) б) невырожденных верхнетреугольных матриц размера n×n.

2 октября 2017

Конечно порождённые и не конечно порождённые абелевы группы, примеры. Структура конечно порождённых абелевых групп, её определение, исходя из представления группы в виде факторгруппы свободной группы по подгруппе, заданной набором порождающих элементов, приведением целочисленной матрицы координат порождающих элементов подгруппы к «диагональному» виду. Вычисление порядка элемента в конечно порождённой абелевой группе, представленной как факторгруппа свободной группы.

Домашнее задание:
  • 60.32, 60.50, 60.51, 60.52агд, 60.53, 60.54;
  • Являются ли конечно порождёнными следующие группы:
    1. группа рациональных дробей m/n, у которых простые делители n содержатся среди {p_1,…,p_s}, с операцией сложения;
    2. группа рациональных дробей m/n≠0, у которых простые делители m и n содержатся среди {p_1,…,p_s}, с операцией умножения;
  • доказать две формулы для объёма целочисленного n-мерного параллелепипеда П:
    1. vol(П) = число целых точек в П, не лежащих на его гранях, не содержащих данную вершину 0;
    2. vol(П) = ∑ (1/2^k)⋅(число целых точек внутри всех (n-k)-мерных граней П), где суммирование ведётся по k=0,1,…,n.

9 октября 2017

Конечные абелевы группы, их структура, тип группы. Классификация конечных абелевых групп заданного порядка. Определение типа факторгруппы конечной (или конечно порождённой) абелевой группы. Вложимость конечных абелевых групп друг в друга. Количество подгрупп порядка 2 в нециклической абелевой группе порядка 12.

Домашнее задание:
  • 60.39ежз, 60.40ав, 60.42, 60.43, 60.45.

16 октября 2017

Действия групп на множествах, описание орбит и стабилизаторов. Пять правильных многогранников (платоновы тела), двойственность между ними. Группы движений двойственных многогранников совпадают. Группа вращений тетраэдра.

Домашнее задание:
  • 57.1абв, 57.3, 57.9бв, 57.12в, 57.13а★б, 58.35, 58.36.

23 октября 2017

Теоретико-групповое определение и классификация правильных многогранников. Формула Бернсайда для числа орбит действия конечной группы на конечном множестве. Действие группы на себе сопряжениями: классы сопряжённости и централизаторы, число элементов в классе сопряжённости, формула классов.

Домашнее задание:
  • 57.23б, 57.25, 57.31, 58.43;
  • сколько существует различных игральных костей? (игральная кость — это кубик, на каждой грани которого написана цифра от 1 до 6, причём цифры могут повторяться);
  • доказать формулу Эйлера для правильного многогранника с помощью формулы Бернсайда, рассмотрев действие группы вращений многогранника на множестве точек описанной сферы с нетривиальным стабилизатором.

30 октября 2017

Коммутант группы, его свойства. Вычисление коммутанта группы G методом оценки сверху (ядро гомоморфизма G в абелеву группу) и снизу (подгруппа, порождённая некоторым количеством коммутаторов). Кратные коммутанты, разрешимые группы, критерий разрешимости (в терминах подгруппы и факторгруппы). Силовские подгруппы, теоремы Силова, их применение к доказательству непростоты и разрешимости групп малых порядков.

Домашнее задание:
  • 62.13, 62.18вгд, 62.22;
  • вычислить коммутант группы, состоящей из невырожденных матриц вида
  • доказать, что:
    1. группа SL_2(Z_3) имеет порядок 24, но не изоморфна ни S_4, ни D_12;
    2. силовская 2-подгруппа в SL_2(Z_3) нормальна и изоморфна Q_8;
    3. ступень разрешимости группы SL_2(Z_3) равна 3;
  • доказать, что группы порядков 24, 28, 36 разрешимы.

13 ноября 2017