Различия

Показаны различия между двумя версиями страницы.

Ссылка на это сравнение

Предыдущая версия справа и слева Предыдущая версия
Следующая версия
Предыдущая версия
s_k_rings_and_algebras_2025_2026 [30.09.2025 14:14]
gordienko
s_k_rings_and_algebras_2025_2026 [16.10.2025 21:34] (текущий)
gordienko
Строка 39: Строка 39:
  
 4) **29.09.2025.** Артиновы и нётеровы кольца. Пример кольца артинова слева, но не артинова справа. Нильпотентность радикала Джекобсона в артиновых кольцах (и алгебрах). Групповые алгебры. Теорема Машке (в терминах радикала Джекобсона). Идемпотенты. Минимальный левый идеал в кольце, не содержащем ненулевых нильпотентных идеалов, порождается идемпотентом. 4) **29.09.2025.** Артиновы и нётеровы кольца. Пример кольца артинова слева, но не артинова справа. Нильпотентность радикала Джекобсона в артиновых кольцах (и алгебрах). Групповые алгебры. Теорема Машке (в терминах радикала Джекобсона). Идемпотенты. Минимальный левый идеал в кольце, не содержащем ненулевых нильпотентных идеалов, порождается идемпотентом.
 +
 +5) **06.10.2025.** Поднятие идемпотентов по модулю ниль-идеала. Односторонние идеалы в полупростых артиновых кольцах порождаются идемпотентами, а двухсторонние - центральными идемпотентами. Существование единицы в полупростом артиновом кольце. Прямое произведение колец. Теорема Веддербёрна -  Артина: разложение полупростого артинова кольца в (конечное) прямое произведение своих минимальных идеалов, которые являются простыми артиновыми кольцами. Свойство отщепляемости для вполне приводимых модулей.
 +
 +6) **13.10.2025.** Теорема плотности. Примитивные кольца. Тела. Кольцо эндоморфизмов неприводимого модуля - тело. Линейная алгебра над телами. Теорема Веддербёрна - Артина: простое артиново кольцо изоморфно кольцу квадратных матриц над телом. Случай конечномерных алгебр, в т.ч. над алгебраически замкнутыми полями. Алгебры с 1.
  
 __Литература:__ __Литература:__