Различия

Показаны различия между двумя версиями страницы.

Ссылка на это сравнение

Предыдущая версия справа и слева Предыдущая версия
Следующая версия
Предыдущая версия
s_k_rings_and_algebras_2025_2026 [17.11.2025 23:59]
gordienko
s_k_rings_and_algebras_2025_2026 [02.12.2025 12:31] (текущий)
gordienko
Строка 10: Строка 10:
 **среда**, **16:45-18:20**, ауд. **405** (2-й учебный корпус), в следующие даты: **12, 19, 26 ноября** и **10 декабря**. **среда**, **16:45-18:20**, ауд. **405** (2-й учебный корпус), в следующие даты: **12, 19, 26 ноября** и **10 декабря**.
  
-Экзамен по задачам осеннего семестра состоится **15 декабря** вместо последней лекции. +Экзамен по задачам осеннего семестра (спецкурс "Ассоциативные кольца"состоится **15 декабря** вместо последней лекции. 
  
-__Аннотация курса.__ Кольца и алгебры находят своё применение в самых различных областях математики и физики. В осеннем семестре спецкурс называется "Ассоциативные кольца" и посвящён тем разделам теории ассоциативных колец, которых по причине недостатка времени не удаётся коснуться в общем курсе алгебры. Осенью планируется рассмотреть следующие темы: модули над кольцами, артиновы кольца, радикал Джекобсона, простые и полупростые кольца, теорема плотности, теорема Веддербёрна-Артина. Особое внимание планируется уделить когомологиям Хохшильда и гомологическим методам в теории колец. В частности, при помощи когомологий Хохшильда будет доказана знаменитая теорема Веддербёрна-Мальцева об отщеплении радикала Джекобсона максимальной полупростой подалгеброй. Весенний семестр будет посвящён алгебрам Ли.+**[[https://disk.yandex.ru/i/ch5h4BeXRPmbfw|Задачи осеннего семестра (спецкурс "Ассоциативные кольца")]]** 
 + 
 +Решённые задачи нужно будет принести в **отдельной** тонкой тетради. На экзамене будут заданы задачи и вопросы на понимание по программе ниже. Число вопросов и задач будет зависеть от того, насколько много задач вам удастся сделать дома из списка выше, и того, насколько часто я вас видел на лекциях. На экзамене ничем нельзя будет пользоваться, кроме тетради с решёнными задачами. 
 + 
 +__Аннотация курса.__ Кольца и алгебры находят своё применение в самых различных областях математики и физики. 
 + 
 +В осеннем семестре спецкурс называется "Ассоциативные кольца" и посвящён тем разделам теории ассоциативных колец, которых по причине недостатка времени не удаётся коснуться в общем курсе алгебры. Осенью планируется рассмотреть следующие темы: модули над кольцами, артиновы кольца, радикал Джекобсона, простые и полупростые кольца, теорема плотности, теорема Веддербёрна-Артина. Особое внимание планируется уделить когомологиям Хохшильда и гомологическим методам в теории колец. В частности, при помощи когомологий Хохшильда будет доказана знаменитая теорема Веддербёрна-Мальцева об отщеплении радикала Джекобсона максимальной полупростой подалгеброй. 
 + 
 +Весенний семестр (изложение будет вестись независимо от осеннего семестра) будет посвящён алгебрам Ли. Алгебры Ли находят своё применение в механике, физике, геометрии и дифференциальных уравнениях. С алгебрами Ли мы впервые знакомимся на первом курсе, изучая векторное произведение векторов, относительно которого векторы трёхмерного пространства и образуют алгебру Ли. Также любую ассоциативную алгебру можно превратить в алгебру Ли относительно коммутатора $[a,b]:=ab-ba$. В курсе планируется рассмотреть следующие темы: теоремы Энгеля и Ли, простые и полупростые алгебры Ли, форма Киллинга, критерий Картана, системы корней, диаграммы Дынкина, разрешимый и нильпотентный радикалы, подалгебра Картана, универсальная обёртывающая алгебра алгебры Ли, теорема Пуанкаре--Биркгофа--Витта, леммы Уайтхеда, теорема Вейля. Особое внимание планируется уделить когомологиям алгебр Ли и гомологическим методам. В частности, при помощи когомологий алгебр Ли будет доказана знаменитая теорема Леви--Мальцева об отщеплении разрешимого радикала максимальной полупростой подалгеброй.
  
 __Благодарности:__ чтение спецкурса в осеннем семестре поддержано фондом БАЗИС.  __Благодарности:__ чтение спецкурса в осеннем семестре поддержано фондом БАЗИС. 
Строка 18: Строка 26:
 1) **08.09.2025.** Кольцо, ассоциативное кольцо. Кольцо с единицей. Левые и правые модули над кольцом. 1) **08.09.2025.** Кольцо, ассоциативное кольцо. Кольцо с единицей. Левые и правые модули над кольцом.
  
-__Упражнение.__ Проверить равенства 0_R m = 0_M  и 0_M = 0_M, где - произвольный элемент кольца R, а m - произвольный элемент левого R-модуля M.+__Упражнение.__ Проверить равенства $0_A m = 0_M и $a 0_M = 0_M$, где $a$ - произвольный элемент кольца $A$, а $m- произвольный элемент левого $A$-модуля $M$.
  
 Гомоморфизм колец, гомоморфизм модулей. Подмодули. Прямая сумма и прямое произведение модулей. Модули над кольцом с единицей. Присоединение к кольцу единицы. Левые, правые и двухсторонние идеалы. Факторкольцо.  Гомоморфизм колец, гомоморфизм модулей. Подмодули. Прямая сумма и прямое произведение модулей. Модули над кольцом с единицей. Присоединение к кольцу единицы. Левые, правые и двухсторонние идеалы. Факторкольцо. 
Строка 32: Строка 40:
 Аннулятор модуля. Радикал Джекобсона. Регулярные левые идеалы. Частично упорядоченные множества. Лемма Цорна. Звёздное произведение. Различные характеризации радикала Джекобсона. Радикальная группа. Левый и правый радикалы Джекобсона совпадают. Аннулятор модуля. Радикал Джекобсона. Регулярные левые идеалы. Частично упорядоченные множества. Лемма Цорна. Звёздное произведение. Различные характеризации радикала Джекобсона. Радикальная группа. Левый и правый радикалы Джекобсона совпадают.
  
-3) **22.09.2025.** Характеризация элементов j радикала Джекобсона в кольцах с единицей в терминах обратимости элементов вида (1+rj).  Радикалы Джекобсона алгебры как кольца и как алгебры совпадают. Полупростые кольца. Радикал Джекобсона идеала.+3) **22.09.2025.** Характеризация элементов $jрадикала Джекобсона в кольцах с единицей в терминах обратимости элементов вида $(1+rj)$.  Радикалы Джекобсона алгебры как кольца и как алгебры совпадают. Полупростые кольца. Радикал Джекобсона идеала.
  
 __Упражнение.__ Сохраняется ли радикал Джекобсона при сюръективных гомоморфизмах колец? __Упражнение.__ Сохраняется ли радикал Джекобсона при сюръективных гомоморфизмах колец?
Строка 53: Строка 61:
 9) **10.11.2025.** Сепарирующий идемпотент и его свойства. Примеры сепарабельных алгебр. Конечная порождённость как $R$-модулей сепарабельных $R$-алгебр, проективных как $R$-модулей, где $R$ --- коммутативное кольцо с $1$. Категории и функторы. Точные последовательности. 9) **10.11.2025.** Сепарирующий идемпотент и его свойства. Примеры сепарабельных алгебр. Конечная порождённость как $R$-модулей сепарабельных $R$-алгебр, проективных как $R$-модулей, где $R$ --- коммутативное кольцо с $1$. Категории и функторы. Точные последовательности.
  
-__Упражнение.__ Функтор $\mathrm{Hom}(M,-)$ точен слева для любого модуля $M$. Этот функтор точен, если и только если $M$ проективен.+__Упражнение.__ Функтор $\mathrm{Hom}_A(M,-) \colon {}_A\mathbf{Mod} \to \mathbf{Ab}$ точен слева для любого модуля $M$ над кольцом $A$. Этот функтор точен, если и только если $M$ проективен.
  
 10) **12.11.2025.** Свойство отщепляемости и полная приводимость модуля.  10) **12.11.2025.** Свойство отщепляемости и полная приводимость модуля. 
Строка 59: Строка 67:
  
 11) **17.11.2025.** Сепарабельность гомоморфных образов, прямых и тензорных произведений сепарабельных алгебр. Сепарабельность и расширение кольца скаляров. Сепарабельность над подкольцами. Построение алгебраически замкнутого алгебраического расширения для произвольного поля. 11) **17.11.2025.** Сепарабельность гомоморфных образов, прямых и тензорных произведений сепарабельных алгебр. Сепарабельность и расширение кольца скаляров. Сепарабельность над подкольцами. Построение алгебраически замкнутого алгебраического расширения для произвольного поля.
 +
 +12) **19.11.2025.** Алгебра над полем сепарабельна, если и только если она полупроста и остаётся таковой при произвольном расширении основного поля.
 +Теорема о примитивном элементе (без доказательства).
 +Сепарабельные расширения как сепарабельные алгебры.
 +Центр простой алгебры - поле. Тензорное произведение простой алгебры и центральной простой алгебры. Сепарабельность конечномерных полупростых алгебр над совершенными полями (начали).
 +
 +13) **24.11.2025.** Сепарабельность конечномерных полупростых алгебр над совершенными полями (закончили). Комплéксы. (Ко)циклы и (ко)границы. (Ко)гомологии.
 +Когомологии Хохшильда. Связь с когомологиями групп. Группы когомологий малой размерности.
 +Алгебры, чьи первые когомологии  нулевые, - это в точности сепарабельные алгебры (доказали лемму).
 +
 +14) **26.11.2025**. Алгебры, чьи первые когомологии нулевые, - это в точности сепарабельные алгебры (завершили доказательство). Размерность Хохшильда. Проективные резольвенты. Производные функторы. Длинная точная последовательность.
 +
 +__Упражнение.__ Функтор $\mathrm{Hom}_A(-,M)$ точен справа как функтор ${}_A \mathbf{Mod} \to \mathbf{Ab}^\mathrm{op}$  для любого модуля $M$ над ассоциативным кольцом $A$.
 +
 +Функтор $\mathrm{Ext}$. Сопряженные функторы. Бар-комплекс. Связь функтора $\mathrm{Ext}$ и когомологий Хохшильда (начали).
 +
 +15) **01.12.2025**.
 +Цепные гомотопии. Связь функтора $\mathrm{Ext}$ и когомологий Хохшильда (закончили). Алгебры размерности Хохшильда $0$ - это в точности сепарабельные алгебры.
 +
 +
  
 __Литература:__ __Литература:__