| Предыдущая версия справа и слева
Предыдущая версия
Следующая версия
|
Предыдущая версия
|
s_k_rings_and_algebras_2025_2026 [28.11.2025 14:17] gordienko |
s_k_rings_and_algebras_2025_2026 [16.01.2026 19:57] (текущий) gordienko |
| Весенний семестр (изложение будет вестись независимо от осеннего семестра) будет посвящён алгебрам Ли. Алгебры Ли находят своё применение в механике, физике, геометрии и дифференциальных уравнениях. С алгебрами Ли мы впервые знакомимся на первом курсе, изучая векторное произведение векторов, относительно которого векторы трёхмерного пространства и образуют алгебру Ли. Также любую ассоциативную алгебру можно превратить в алгебру Ли относительно коммутатора $[a,b]:=ab-ba$. В курсе планируется рассмотреть следующие темы: теоремы Энгеля и Ли, простые и полупростые алгебры Ли, форма Киллинга, критерий Картана, системы корней, диаграммы Дынкина, разрешимый и нильпотентный радикалы, подалгебра Картана, универсальная обёртывающая алгебра алгебры Ли, теорема Пуанкаре--Биркгофа--Витта, леммы Уайтхеда, теорема Вейля. Особое внимание планируется уделить когомологиям алгебр Ли и гомологическим методам. В частности, при помощи когомологий алгебр Ли будет доказана знаменитая теорема Леви--Мальцева об отщеплении разрешимого радикала максимальной полупростой подалгеброй. | Весенний семестр (изложение будет вестись независимо от осеннего семестра) будет посвящён алгебрам Ли. Алгебры Ли находят своё применение в механике, физике, геометрии и дифференциальных уравнениях. С алгебрами Ли мы впервые знакомимся на первом курсе, изучая векторное произведение векторов, относительно которого векторы трёхмерного пространства и образуют алгебру Ли. Также любую ассоциативную алгебру можно превратить в алгебру Ли относительно коммутатора $[a,b]:=ab-ba$. В курсе планируется рассмотреть следующие темы: теоремы Энгеля и Ли, простые и полупростые алгебры Ли, форма Киллинга, критерий Картана, системы корней, диаграммы Дынкина, разрешимый и нильпотентный радикалы, подалгебра Картана, универсальная обёртывающая алгебра алгебры Ли, теорема Пуанкаре--Биркгофа--Витта, леммы Уайтхеда, теорема Вейля. Особое внимание планируется уделить когомологиям алгебр Ли и гомологическим методам. В частности, при помощи когомологий алгебр Ли будет доказана знаменитая теорема Леви--Мальцева об отщеплении разрешимого радикала максимальной полупростой подалгеброй. |
| |
| __Благодарности:__ чтение спецкурса в осеннем семестре поддержано фондом БАЗИС. | __Благодарности:__ чтение спецкурса в осеннем и весеннем семестрах поддержано фондом БАЗИС. |
| |
| 1) **08.09.2025.** Кольцо, ассоциативное кольцо. Кольцо с единицей. Левые и правые модули над кольцом. | 1) **08.09.2025.** Кольцо, ассоциативное кольцо. Кольцо с единицей. Левые и правые модули над кольцом. |
| |
| Функтор $\mathrm{Ext}$. Сопряженные функторы. Бар-комплекс. Связь функтора $\mathrm{Ext}$ и когомологий Хохшильда (начали). | Функтор $\mathrm{Ext}$. Сопряженные функторы. Бар-комплекс. Связь функтора $\mathrm{Ext}$ и когомологий Хохшильда (начали). |
| | |
| | 15) **01.12.2025**. |
| | Цепные гомотопии. Связь функтора $\mathrm{Ext}$ и когомологий Хохшильда (закончили). Алгебры размерности Хохшильда $0$ - это в точности сепарабельные алгебры. |
| | |
| | 16) **08.12.2025**. Расширения Хохшильда алгебр. Группа $H_R^2(A;M)$. Теорема Веддербёрна-Мальцева (начали доказывать). |
| | |
| | |
| | 17) **10.12.2025**. Теорема Веддербёрна-Мальцева (закончили). Случай колец без единицы. |
| | Точная длинная последовательность для когомологий Хохшильда. (Два достаточных условия.) |
| | Глобальная размерность. Кольца глобальной размерности 0 - это в точности артиновы полупростые кольца. Гомологии Хохшильда. |
| | |
| | Темы, которые мы разобрать **не успели**: связь гомологий Хохшильда с функтором $\mathrm{Tor}$, кэлеровы дифференциалы. |
| | |
| | **15.12.2025**. Экзамен по задачам осеннего семестра (спецкурс "Ассоциативные кольца"). |
| | |
| | **[[https://teach-in.ru/course/associative-rings|Видеозаписи лекций на сайте teach-in (осенний семестр)]]** (эти же видео выложены на многих других платформах; чтобы их найти, используйте поиск в интернете) |
| |
| __Литература:__ | __Литература:__ |