| Предыдущая версия справа и слева
Предыдущая версия
|
|
shared:seminars_iva [19.10.2025 22:05] gordienko |
shared:seminars_iva [23.10.2025 16:34] (текущий) gordienko |
| |
| ==== Ближайшие заседания ==== | ==== Ближайшие заседания ==== |
| |
| **22 октября 2025 года.** Гордиенко А.С. "О классификации квантовых симметрий." | |
| |
| __Аннотация.__ В докладе мы обсудим текущий прогресс в классификации квантовых симметрий. В частности, будет показано, как при n >= 14 с помощью группы Хигмана строится пример элементарной градуировки на алгебре M_n(k) всех матриц n x n над произвольным полем k, которую нельзя переградуировать конечной группой (предыдущая известная оценка была n>=349), а также как строится пример такой подалгебры V с единицей в алгебре End_k(M_n(k)) всех линейных операторов M_n(k)-> M_n(k), что кодействие V-универсальной кодействующей алгебры Хопфа имеет нетривиальный коноситель V, а двойственная V-универсальная действующая алгебра Хопфа тривиальна и, соответственно, её действие имеет тривиальный коноситель, что даёт положительный ответ на мой вопрос о том, может ли коноситель меняться при переходе от V-универсальных кодействующих алгебр Хопфа к V-универсальным действующим. | |
| |
| **29 октября 2025 года.** Колесников П.С. (ИМ СО РАН, **ZOOM**) "Конформные алгебры Новикова." | **29 октября 2025 года.** Колесников П.С. (ИМ СО РАН, **ZOOM**) "Конформные алгебры Новикова." |
| |
| __Аннотация.__ Класс неассоциативных алгебр, названных алгебрами Новикова, возник в работах И.М. Гельфанда с И.Я. Дорфман (1979) и С.П. Новикова с соавторами (1980-е) как способ описания условий на координаты тензоров, возникающих в задачах функционального анализа и дифференциальных уравнений. Структурная теория для этого класса алгебр активно изучается, начиная с работы Е.И. Зельманова (1987). Как было отмечено в работах С. Сю (1999) и Б. Бакалова, А.Д'Андреа, В. Каца (2001), алгебры Новикова тесно связаны с конформными алгебрами Ли - структурами, возникшими в квантовой теории поля. Мы рассмотрим ряд примеров и задач, связанных с конформными алгебрами Новикова. | __Аннотация.__ Класс неассоциативных алгебр, названных алгебрами Новикова, возник в работах И.М. Гельфанда с И.Я. Дорфман (1979) и С.П. Новикова с соавторами (1980-е) как способ описания условий на координаты тензоров, возникающих в задачах функционального анализа и дифференциальных уравнений. Структурная теория для этого класса алгебр активно изучается, начиная с работы Е.И. Зельманова (1987). Как было отмечено в работах С. Сю (1999) и Б. Бакалова, А.Д'Андреа, В. Каца (2001), алгебры Новикова тесно связаны с конформными алгебрами Ли - структурами, возникшими в квантовой теории поля. Мы рассмотрим ряд примеров и задач, связанных с конформными алгебрами Новикова. |
| | |
| | Zoom Конференция https://us05web.zoom.us/j/81629965224?pwd=yEyvMAUSTcTrerm02T7K91a2b0ju8V.1 |
| | |
| | Идентификатор конференции: 816 2996 5224 |
| | |
| | Код доступа: 271828 |
| |
| **5 ноября 2025 года.** Ероховец Н.Ю. "Когомологически жёсткие семейства 3-мерных и 6-мерных многообразий, отвечающих прямоугольным гиперболическим многогранникам." | **5 ноября 2025 года.** Ероховец Н.Ю. "Когомологически жёсткие семейства 3-мерных и 6-мерных многообразий, отвечающих прямоугольным гиперболическим многогранникам." |
| |
| **15 октября 2025 года.** Сипачёва О.В. "Топологические универсальные алгебры." | **15 октября 2025 года.** Сипачёва О.В. "Топологические универсальные алгебры." |
| | |
| | **22 октября 2025 года.** Гордиенко А.С. "О классификации квантовых симметрий." |
| | |
| | __Аннотация.__ В докладе мы обсудим текущий прогресс в классификации квантовых симметрий. В частности, будет показано, как при $n \geqslant 14$ с помощью группы Хигмана строится пример элементарной градуировки на алгебре $M_n(\mathbb k)$ всех матриц $n \times n$ над произвольным полем $\mathbb k$, которую нельзя переградуировать конечной группой (предыдущая известная оценка была $n\geqslant 349$), а также как строится пример такой подалгебры $V$ с единицей в алгебре $\mathrm{End}_{\mathbb k}(M_n(\mathbb k))$ всех линейных операторов $M_n(\mathbb k)\to M_n(\mathbb k)$, что кодействие $V$-универсальной кодействующей алгебры Хопфа имеет нетривиальный коноситель $V$, а двойственная $V$-универсальная действующая алгебра Хопфа тривиальна и, соответственно, её действие имеет тривиальный коноситель, что даёт положительный ответ на мой вопрос о том, может ли коноситель меняться при переходе от $V$-универсальных кодействующих алгебр Хопфа к $V$-универсальным действующим. |
| | |
| |
| [[seminars_iva_2024_2025|Архив 2024/2025]] | [[seminars_iva_2024_2025|Архив 2024/2025]] |