Семинар "Избранные вопросы алгебры"

Семинар «Избранные вопросы алгебры» был основан в 1972 году членом-корреспондентом РАН Алексеем Ивановичем Кострикиным. В разное время соруководителями семинара были Ю.А. Бахтурин, А.Н. Рудаков, С.П. Дёмушкин.

В настоящее время руководителями семинара являются

Зайцев Михаил Владимирович

Чубаров Игорь Андреевич

Михалёв Александр Александрович

Гордиенко Алексей Сергеевич

Заседания семинара в осеннем семестре 2025/2026 учебного года будут проходить очно (если ниже не указано противное) по средам в аудитории 406 (2-й учебный корпус), начало в 18:30.

Ближайшие заседания

5 ноября 2025 года. Ероховец Н.Ю. «Когомологически жёсткие семейства 3-мерных и 6-мерных многообразий, отвечающих прямоугольным гиперболическим многогранникам.»

12 ноября 2025 года. Воронин Андрей. «Структура представлений колчанов.»

Аннотация: Представлением колчана (ориентированного графа) является набор линейных пространств, соответствующих вершинам, и линейные отображения между ними, соответствующие рёбрам колчана. В докладе будет рассмотрена связь наличия отношений сильной связности между вершинами колчана со структурой его простых и неприводимых представлений. Кроме того будет сформулирован и доказан критерий существования простого представления с заданным вектором размерностей.

19 ноября 2025 года. Мануйлов В.М. Название доклада станет известно позже.

26 ноября 2025 года. Докладчик станет известен позже.

3 декабря 2025 года. Информация о заседании появится позже.

10 декабря 2025 года. Михеенко М.А. Название доклада станет известно позже.

Прошедшие заседания

1 октября 2025 года. Новочадов Дмитрий. «Оценки коразмерностей для тензорных полилинейных тождеств.»

Аннотация. Последовательность классических коразмерностей (ассоциативной) алгебры A измеряет пространства полилинейных A-значных функций, заданных операциями алгебры на тензорных степенях A. Аналогичным пространствам отображений между разными тензорными степенями алгебры можно сопоставить бесконечный двумерный массив её тензорных коразмерностей. В докладе будут рассмотрены основные особенности тензорных тождеств и некоторые результаты теории коразмерностей, которые удаётся перенести на этот случай.

8 октября 2025 года. Попеленский Ф.Ю. «Когомологии алгебр Стинрода и спектральные последовательности - 0.»

Аннотация. На прошлом докладе с похожим названием, но без номера, был очень короткий рассказ о роли этих алгебр в топологии. Также был рассказ об общей теории когомологий алгебр Хопфа и что из нее можно получить для вопросов, важных в топологии. Новый доклад будет посвящен некоторым задачам алгебраической топологии, в которых возникает необходимость изучать алгебры Хопфа и их когомологии. От прошлого доклада рассказ не будет зависеть; все нужные понятия будут введены по ходу изложения.

15 октября 2025 года. Сипачёва О.В. «Топологические универсальные алгебры.»

22 октября 2025 года. Гордиенко А.С. «О классификации квантовых симметрий.»

Аннотация. В докладе мы обсудим текущий прогресс в классификации квантовых симметрий. В частности, будет показано, как при $n \geqslant 14$ с помощью группы Хигмана строится пример элементарной градуировки на алгебре $M_n(\mathbb k)$ всех матриц $n \times n$ над произвольным полем $\mathbb k$, которую нельзя переградуировать конечной группой (предыдущая известная оценка была $n\geqslant 349$), а также как строится пример такой подалгебры $V$ с единицей в алгебре $\mathrm{End}_{\mathbb k}(M_n(\mathbb k))$ всех линейных операторов $M_n(\mathbb k)\to M_n(\mathbb k)$, что кодействие $V$-универсальной кодействующей алгебры Хопфа имеет нетривиальный коноситель $V$, а двойственная $V$-универсальная действующая алгебра Хопфа тривиальна и, соответственно, её действие имеет тривиальный коноситель, что даёт положительный ответ на мой вопрос о том, может ли коноситель меняться при переходе от $V$-универсальных кодействующих алгебр Хопфа к $V$-универсальным действующим.

29 октября 2025 года. Колесников П.С. (ИМ СО РАН, ZOOM) «Конформные алгебры Новикова.»

Аннотация. Класс неассоциативных алгебр, названных алгебрами Новикова, возник в работах И.М. Гельфанда с И.Я. Дорфман (1979) и С.П. Новикова с соавторами (1980-е) как способ описания условий на координаты тензоров, возникающих в задачах функционального анализа и дифференциальных уравнений. Структурная теория для этого класса алгебр активно изучается, начиная с работы Е.И. Зельманова (1987). Как было отмечено в работах С. Сю (1999) и Б. Бакалова, А.Д'Андреа, В. Каца (2001), алгебры Новикова тесно связаны с конформными алгебрами Ли - структурами, возникшими в квантовой теории поля. Мы рассмотрим ряд примеров и задач, связанных с конформными алгебрами Новикова.

Zoom Конференция https://us05web.zoom.us/j/81629965224?pwd=yEyvMAUSTcTrerm02T7K91a2b0ju8V.1

Идентификатор конференции: 816 2996 5224

Код доступа: 271828

Архив 2024/2025

Архив 2023/2024

Архив 2022/2023