Различия
Показаны различия между двумя версиями страницы.
Предыдущая версия справа и слева Предыдущая версия Следующая версия | Предыдущая версия | ||
shared:seminars_rings_and_modules-1 [08.10.2019 19:57] markova |
shared:seminars_rings_and_modules-1 [12.10.2025 18:32] (текущий) markova |
||
---|---|---|---|
Строка 1: | Строка 1: | ||
+ | |||
====Спецсеминар " | ====Спецсеминар " | ||
--------- | --------- | ||
- | **Семинар проходит по понедельникам в ауд. 13-02 Главного здания, | + | **Семинар проходит по понедельникам в Главном здании МГУ, аудитория <color # |
- | ---- | + | |
- | Регулярные заседания нашего семинара возобновятся | + | **В осеннем семестре 2025 года |
--------- | --------- | ||
+ | Для дистанционного участия в семинаре, | ||
- | **14 октября** | + | |
+ | --------- | ||
- | **Начало в <fc # | ||
- | **21 октября** | ||
- | **<fc # | + | **13 октября** |
- | --------- | + | Докладчик: |
- | **Прошедшие заседания:** | + | Название: |
- | **7 октября** | + | Аннотация: Среди порождающих элементов алгебры идемпотенты занимают особое место. Они позволяют значительно упростить слова от образующих. Оказывается, что если у алгебры имеется порождающее подмножество, |
- | Докладчик: **Д.К. Кудрявцев** | + | Доклад частично основан на работе: |
+ | https://doi.org/10.1017/ | ||
- | Название доклада: **Длина прямой суммы алгебр** | + | **20 октября** |
- | Аннотация: Впервые рассмотренный в середине XX века в ассоциативном случае, структурный инвариант названный «длиной» изначально применялся для ассоциативных алгебр, | + | Докладчик: |
- | Задача вычисления длин конкретных алгебр и получения оценок на значения длин в различных классах находится в стадии активного изучения. Среди результатов, | + | |
+ | **27 октября** | ||
- | **30 сентября** | + | Докладчик: |
- | Докладчик: **С.А. Жилина** | + | Название: **Аддитивные автоморфизмы регулярного графа кольца матриц** |
- | Название доклада: **Дважды альтернативные делители нуля в контр-алгебрах** | + | Аннотация: |
+ | В докладе мы будем рассматривать автоморфизмы регулярного графа пространства прямоугольных матриц n x m над полем. Регулярный граф кольца матриц — это неориентированный граф, вершинами которого являются матрицы максимального ранга, и различные матрицы A и B соединены ребром, | ||
- | Аннотация: Одной из важных алгебраических структур являются вещественные алгебры Кэли-Диксона. Среди них можно выделить две основные последовательности алгебр: | + | **3 ноября** <color #ed1c24>заседание не проводится.</ |
+ | ----- | ||
+ | **Прошедшие заседания: | ||
- | **04.09.2019** ВНИМАНИЕ: | + | **29 сентября** |
- | 1. **Pálfia Miklós**, On the recent advances in the multivariable theory | + | Докладчик: |
- | of operator monotone functions and means | + | |
- | Functional Analysis Research Group, Institute of Mathematics, | + | |
- | University of Szeged, Hungary, | + | |
- | Sungkyunkwan University, Korea | + | |
- | Abstract: | + | Название: **О графах ортогональности алгебр Окубо** |
- | The origins of this talk go back to the fundamental theorem of Loewner | + | |
- | in 1934 on operator monotone real functions and also to | + | |
- | the hyperbolic geometry of positive matrices. Loewner' | + | |
- | characterizing one variable operator monotone functions has been | + | |
- | very influential in matrix analysis and operator theory. Among others | + | |
- | it lead to the Kubo-Ando theory of two-variable operator means | + | |
- | of positive operators in 1980. One of the nontrivial means of the | + | |
- | Kubo-Ando theory is the non-commutative generalization of the | + | |
- | geometric mean which is intimately related to the hyperbolic, | + | |
- | non-positively curved Riemannian structure of positive matrices. | + | |
- | This geometry provides a key tool to define multivariable | + | |
- | generalizations of two-variable operator means. Arguably the most | + | |
- | important | + | |
- | example of them all is the Karcher mean which is the center of mass on | + | |
- | this manifold. This formulation enables us to define this mean | + | |
- | for probability measures on the cone of positive definite matrices | + | |
- | extending further the multivariable case. Even the infinite | + | |
- | dimensional | + | |
- | case of positive operators is tractable by abandoning the Riemannian | + | |
- | structure in favor of a Banach-Finsler structure provided by | + | |
- | Thompson' | + | |
- | This metric enables us to develop a general theory of means of | + | |
- | probability measures defined as unique solutions of nonlinear operator | + | |
- | equations on the cone, with the help of contractive semigroups | + | |
- | of nonlinear operators. We also introduce the recently established | + | |
- | structure theory of multivariable operator monotone functions | + | |
- | extending the classical result | + | |
- | of Loewner into the non-commutative multivariable realm of free | + | |
- | functions, providing theoretically explicit closed formulas for our | + | |
- | multivariable | + | |
- | operator means. | + | |
- | 2. **Fedor Pakovich**, COMMUTING RATIONAL FUNCTIONS REVISITED | + | Аннотация: |
- | Ben Gurion University, Israel | + | |
+ | **6 октября** <color # | ||
- | Abstract | ||
- | Let A and B be rational functions on the Riemann sphere. The classical | ||
- | Ritt theorem states that if A and B commute and do not have an iterate | ||
- | in common, then up to a conjugacy they are either powers, or Chebyshev | ||
- | polynomials, | ||
- | information about commuting rational functions which do have a common | ||
- | iterate. On the other hand, non-trivial examples of such functions | ||
- | exist and were constructed already by Ritt. In the talk we present new | ||
- | results concerning this class of commuting rational functions. In | ||
- | particular, we describe a method which permits to describe all | ||
- | rational functions commuting with a given rational function. | ||
---- | ---- | ||
**Архив** | **Архив** | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
+ | |||
+ | [[: | ||
[[: | [[: |