Спецсеминар "Кольца, модули и матрицы"
Семинар проходит по понедельникам в Главном здании МГУ, аудитория 12-05, начало в 18:30.
В осеннем семестре 2025 года заседания начнутся 29 сентября.
Для дистанционного участия в семинаре, если Вы не получаете его рассылку, необходимо написать е-майл на адрес guterman at list dot ru.
———
20 октября
Докладчик: Колегов Никита
Название: Системы образующих колец инцидентности
Аннотация: Кольца инцидентности — классический класс колец, связанный с рядом задач в комбинаторике и теории чисел. В докладе будут затронуты вопросы о минимальной мощности систем образующих над кольцами и о длине над полем. Планируется представить основные результаты диссертации докладчика с учётом предыдущего выступления.
27 октября
Докладчик: Гусев Иван (студент магистратуры ФКН ВШЭ, 1 курс)
Название: Аддитивные автоморфизмы регулярного графа кольца матриц
Аннотация: В докладе мы будем рассматривать автоморфизмы регулярного графа пространства прямоугольных матриц n x m над полем. Регулярный граф кольца матриц — это неориентированный граф, вершинами которого являются матрицы максимального ранга, и различные матрицы A и B соединены ребром, если и только если ранг суммы A и B максимален (то есть равен min(n, m)). В докладе мы опишем все аддитивные автоморфизмы регулярного графа, при условии, что в основном поле не менее 5 элементов. Кроме того, мы докажем, что произвольный автоморфизм регулярного графа сохраняет ранговое расстояние между матрицами.
3 ноября заседание не проводится.
Прошедшие заседания:
29 сентября
Докладчик: Павлинов Данил
Название: О графах ортогональности алгебр Окубо
Аннотация: Доклад будет посвящен изучению графов ортогональности и делителей нуля для важного класса неассоциативных алгебр — алгебр Окубо. Основной результат заключается в полном описании структуры этих графов: установлено, что граф делителей нуля связен и имеет диаметр, равный двум, в то время как граф ортогональности несвязен. Для графа ортогональности описаны компоненты связности, и вычислены их диаметры. Кроме того, установлена связь между графом ортогональности алгебры Окубо и графом ортогональности матричной алгебры в случае, когда поле содержит первообразный кубический корень из единицы.
6 октября заседание не проводится.
13 октября
Докладчик: Колегов Никита
Название: Ассоциативные алгебры, порождённые идемпотентами
Аннотация: Среди порождающих элементов алгебры идемпотенты занимают особое место. Они позволяют значительно упростить слова от образующих. Оказывается, что если у алгебры имеется порождающее подмножество, целиком состоящее из идемпотентов, то из этого можно сделать сделать некоторые выводы о структуре самой алгебры. Актуальна и обратная задача: для заданной алгебры исследовать идемпотентые порождающие подмножества. В докладе планируется обзор известных результатов по этой теме. Будет представлена формула для вычисления минимального количества идемпотентов, порождающих алгебру инцидентности над коммутативным кольцом. В этом случае идемпотентные образующие связаны с вложениями диаграммы Хассе в дополнение булева куба.
Доклад частично основан на работе: https://doi.org/10.1017/S0004972724000078
Архив