Кафедра высшей алгебры

Вы посетили: » vecher-vesna-2019



      

Линейная алгебра и геометрия, 1 курс, вечернее отделение

Преподаватель: Д.А.Тимашёв

Занятия проходят по понедельникам c 18:30 по 21:50 в ауд. 13-03.

Программа курса
  1. Векторные пространства, базисы, размерность, координаты. Правило замены координат.
  2. Подпространства, операции над ними, взаимное расположение подпространств.
  3. Линейные функции, сопряжённое пространство.
  4. Линейные отображения и линейные операторы.
  5. Собственные векторы и собственные значения линейного оператора. Теория жордановой нормальной формы.
  6. Билинейные функции (симметрические и кососимметрические). Квадратичные формы.
  7. Евклидовы векторные пространства, их геометрия.
  8. Операторы в евклидовых пространствах: ортогональные, симметрические. Полярное разложение.
  9. Тензоры.
Литература
  1. А.И.Кострикин. Введение в алгебру. Часть II. Линейная алгебра.
  2. Э.Б.Винберг. Курс алгебры. Главы 5−8.
  3. А.И.Кострикин, Ю.И.Манин. Линейная алгебра и геометрия.
  4. Сборник задач по алгебре под ред. А.И.Кострикина. Часть II. Линейная алгебра и геометрия.

Нумерация задач даётся по «Сборнику задач по алгебре» под ред. А.И.Кострикина, 3-е изд., Москва, Физматлит, 2001. Дополнительные задачи помечены знаком ★.


11 февраля 2019

Лекция 1

Векторные пространства над произвольным полем K, скаляры и векторы, примеры: арифметическое пространство K^n, геометрические векторы, пространство матриц, пространство функций на множестве, пространство многочленов, расширения полей. Простейшие следствия аксиом векторного пространства.

Линейные комбинации векторов, линейная зависимость, основная лемма о линейной зависимости.

Базис и размерность векторного пространства, координаты вектора в базисе. Конечномерные и бесконечномерные векторные пространства.

Изоморфизм векторных пространств. Любое векторное пространство размерности n<∞ над полем K изоморфно арифметическому пространству K^n.

Матрица перехода от одного базиса к другому, её свойства. Правило преобразования координат вектора при замене базиса.

Семинар

Экзотический пример векторного пространства: множество всех подмножеств множества X с операцией симметрической разности подмножеств — векторное пространство над полем Z_2. Линейная независимость системы функций 1, cos(x), … , cos(nx) в пространстве функций на вещественной прямой (34.3г). Преобразование координат вектора при замене базиса (34.10а).

Домашнее задание:
  • 34.7а, 34.4б, 34.10в, 34.11а, 34.8бвд★;
  • доказать, что множество R^+ положительных чисел с операциями u⊕v = u·v (u,v∈R^+) и λ⊗v = v^λ (λ∈R, v∈R^+) является векторным пространством над полем R, и найти его размерность.