Различия
Показаны различия между двумя версиями страницы.
Предыдущая версия справа и слева Предыдущая версия Следующая версия | Предыдущая версия | ||
shared:seminars_graphs [01.09.2019 10:39] guterman |
shared:seminars_graphs [29.04.2025 12:07] (текущий) guterman |
||
---|---|---|---|
Строка 1: | Строка 1: | ||
====Спецсеминар " | ====Спецсеминар " | ||
- | --------- | ||
- | |||
- | **Семинар проходит по средам в ауд. 14-15 Главного здания, | ||
---- | ---- | ||
+ | |||
+ | **Семинар Георгия Борисовича Шабата регулярно работает с сентября 1991г. Обычно проходит по средам в ауд. 14-05 Главного здания. В настоящее время проводится частично он-лайн, | ||
+ | |||
---- | ---- | ||
- | **04.09.2019** ВНИМАНИЕ: | + | Для участия |
- | 1. Pálfia Miklós, On the recent advances in the multivariable theory | + | **07.05.2025** |
- | of operator monotone functions and means | + | |
- | Functional Analysis Research Group, Institute of Mathematics, | + | |
- | University of Szeged, Hungary, | + | |
- | Sungkyunkwan University, Korea | + | |
- | Abstract: | + | Н.М. Адрианов, Г.Б. Шабат, Послесловие к докладу "The minimal triangulation |
- | The origins of this talk go back to the fundamental theorem of Loewner | + | |
- | in 1934 on operator monotone real functions and also to | + | |
- | the hyperbolic geometry of positive matrices. Loewner' | + | |
- | characterizing one variable operator monotone functions has been | + | |
- | very influential in matrix analysis and operator theory. Among others | + | |
- | it lead to the Kubo-Ando theory of two-variable operator means | + | |
- | of positive operators in 1980. One of the nontrivial means of the | + | |
- | Kubo-Ando theory is the non-commutative generalization of the | + | |
- | geometric mean which is intimately related to the hyperbolic, | + | |
- | non-positively curved Riemannian structure of positive matrices. | + | |
- | This geometry provides a key tool to define multivariable | + | |
- | generalizations of two-variable operator means. Arguably the most | + | |
- | important | + | |
- | example | + | |
- | this manifold. This formulation enables us to define this mean | + | |
- | for probability measures on the cone of positive definite matrices | + | |
- | extending further the multivariable case. Even the infinite | + | |
- | dimensional | + | |
- | case of positive operators is tractable by abandoning the Riemannian | + | |
- | structure in favor of a Banach-Finsler structure provided by | + | |
- | Thompson' | + | |
- | This metric enables us to develop a general theory of means of | + | |
- | probability measures defined as unique solutions of nonlinear operator | + | |
- | equations on the cone, with the help of contractive semigroups | + | |
- | of nonlinear operators. We also introduce the recently established | + | |
- | structure theory of multivariable operator monotone functions | + | |
- | extending the classical result | + | |
- | of Loewner into the non-commutative multivariable realm of free | + | |
- | functions, providing theoretically explicit closed formulas for our | + | |
- | multivariable | + | |
- | operator means. | + | |
- | 2. F. Pakovich, COMMUTING RATIONAL FUNCTIONS REVISITED | + | **23.04.2025** |
- | Ben Gurion University, Israel | + | |
- | Abstract | + | А.Л. Завесов, |
- | Let A and B be rational functions | + | |
- | Ritt theorem states that if A and B commute | + | **16.04.2025** |
- | in common, then up to a conjugacy they are either powers, or Chebyshev | + | |
- | polynomials, or Latt`es maps. This result however provides no | + | Н.М. Адрианов, |
- | information about commuting rational functions which do have a common | + | |
- | iterate. On the other hand, non-trivial examples | + | **09.04.2025** |
- | exist and were constructed already by Ritt. In the talk we present new | + | |
- | results concerning | + | Г.Б. Шабат, The minimal triangulation of the torus, a remarkable Belyi pair and octonions |
- | particular, we describe a method which permits to describe all | + | |
- | rational functions commuting with a given rational function. | + | Аннотация: |
+ | |||
+ | The talk will be based on the recent paper by Bruno Sevennec, we follow him in the visualization of octonion multiplication. The corresponding Belyi pair is beautiful | ||
+ | |||
+ | The embeddings of other complete graphs will also be mentioned. | ||
+ | |||
+ | **02.04.2025** | ||
+ | |||
+ | Н.М. Адрианов, Деформации минимальных рисунков (продолжение) | ||
+ | |||
+ | **26.03.2025** | ||
+ | |||
+ | Е.М. Крейнес, Линейные отображения, | ||
+ | |||
+ | Аннотация: | ||
+ | |||
+ | Теория линейных отображений, | ||
+ | |||
+ | Доклад основан на серии совместных работ с А. Гутерманом, | ||
+ | |||
+ | **19.03.2025** | ||
+ | |||
+ | 1. Н.М. Адрианов, | ||
+ | |||
+ | 2. Разное | ||
+ | |||
+ | |||
+ | **12.03.2025** | ||
+ | |||
+ | Сизиков Андрей (НИУ ВШЭ, ФКН), | ||
+ | |||
+ | Аннотация: | ||
+ | |||
+ | **05.03.2025** | ||
+ | |||
+ | Н.М. Адрианов, | ||
+ | |||
+ | Аннотация: | ||
+ | В докладе будут представлены | ||
+ | - сети семейств Фрида, содержащие функции Белого *правильных* минимальных рисунков; | ||
+ | - некоторые другие семейства Фрида, | ||
+ | |||
+ | **26.02.2025** | ||
+ | |||
+ | Bogatyrev A.B. (INM RAS, MCFAM, MSU, HSE), Schottky model of | ||
+ | |||
+ | Abstract: Schottky uniformization of Riemann surfaces had been used for the | ||
+ | efficient calculations with the surfaces | ||
+ | end of 1980-ies. I will give a review | ||
+ | of this model and related computational algorithms. | ||
+ | solve various equations in the moduli spaces one needs explicit | ||
+ | formulae relating variations | ||
+ | like abelian integrals to the variations of the group generators. | ||
+ | Formulae of this kind were suggested by the author in 1997 and their | ||
+ | computer | ||
+ | remarkable | ||
+ | |||
+ | **19.02.2025** <color # | ||
+ | |||
+ | 1. Ю.Ю. Кочетков, О пространственных бильярдах с гравитацией. | ||
+ | |||
+ | 2. Разное. | ||
+ | |||
+ | **12.02.2025** | ||
+ | |||
+ | 1. Г.Б. Шабат, Два пути к j=8000. | ||
+ | |||
+ | 2. Разное. | ||
+ | |||
+ | **11.12.2024** | ||
+ | |||
+ | А. Фролов, | ||
+ | |||
+ | **04.12.2024** | ||
+ | |||
+ | | ||
+ | |||
+ | **27.11.2024** | ||
+ | |||
+ | | ||
+ | |||
+ | **20.11.2024** | ||
+ | |||
+ | | ||
+ | |||
+ | **06.11.2024** | ||
+ | |||
+ | Г.Б. Шабат, О работах Воеводского. | ||
+ | |||
+ | |||
+ | **09.10.2024** | ||
+ | |||
+ | 1. О. Белоус, | ||
+ | |||
+ | 2. А. Гранухин, | ||
+ | |||
+ | 3. А. Фролов, | ||
+ | |||
+ | 4. Разное. | ||
+ | |||
+ | **02.10.2024** | ||
+ | |||
+ | Ю. Ю. Кочетков, | ||
+ | |||
+ | **25.09.2024** | ||
+ | |||
+ | Г. Б. Шабат, Кривые рода 2 как пространственные квинтики | ||
+ | |||
+ | **18.09.2024** | ||
+ | |||
+ | Н.Я. Амбург, | ||
+ | |||
+ | Аннотация. Я расскажу о дипломной работе студентки факультета математики ВШЭ Сухаревой Полины. | ||
+ | Ее работа связана с неопубликованной работой А.К. Звонкина о кубическом семействе | ||
+ | |||
+ | |||
+ | ---- | ||
+ | **[[[[: | ||
**Архив** | **Архив** | ||
+ | |||
+ | [[[[: | ||
+ | |||
+ | [[[[: | ||
+ | |||
+ | [[[[: | ||
+ | |||
+ | [[[[: | ||
+ | |||
+ | [[[[: | ||
[[[[: | [[[[: |