Различия
Показаны различия между двумя версиями страницы.
Предыдущая версия справа и слева Предыдущая версия Следующая версия | Предыдущая версия | ||
shared:seminars_graphs [03.11.2019 21:23] guterman |
shared:seminars_graphs [29.04.2025 12:07] (текущий) guterman |
||
---|---|---|---|
Строка 1: | Строка 1: | ||
====Спецсеминар " | ====Спецсеминар " | ||
- | --------- | ||
- | |||
- | **Семинар проходит по средам в ауд. 14-15 Главного здания, | ||
---- | ---- | ||
+ | |||
+ | **Семинар Георгия Борисовича Шабата регулярно работает с сентября 1991г. Обычно проходит по средам в ауд. 14-05 Главного здания. В настоящее время проводится частично он-лайн, | ||
+ | |||
---- | ---- | ||
- | **30.10.2019** | + | Для участия в он-лайн семинаре напишите elena -dot- kreines @ gmail -dot- com |
- | 1. Г.Б. Шабат, О семействах детских рисунков и пар Белого | + | **07.05.2025** |
- | 2. Н.М. Адрианов, | + | Н.М. Адрианов, |
- | **23.10.2019** | + | **23.04.2025** |
- | П.И. Дунин-Барковский (НИУ ВШЭ), Топологическая рекурсия для r-spin | + | А.Л. Завесов, Теория соседства и потоки Риччи |
- | **16.10.2019** | + | **16.04.2025** |
- | 1. Г.Б. Шабат, Паспортные | + | Н.М. Адрианов, Деформации минимальных рисунков (продолжение) |
- | 2. Разное. | + | **09.04.2025** |
- | **09.10.2019** | + | Г.Б. Шабат, The minimal triangulation of the torus, a remarkable Belyi pair and octonions |
- | Г.Б. Шабат, Паспортные многообразия и их размерности | + | Аннотация: The heroes of the talk have been known since the XIX century – the complete graph $K_7$ and the dual Heawood graph (the incidence graph of the Fano plane), embedded into the torus. The brief historical overview will be presented. |
- | **02.10.2019** | + | The talk will be based on the recent paper by Bruno Sevennec, we follow him in the visualization of octonion multiplication. The corresponding Belyi pair is beautiful and clarifies the arithmetic of the modular curve $X_1(7)$; besides it is a convenient model of the speaker and Voevodsy' |
- | 1. Г.Б. Шабат, О реализуемости различных паспортов | + | The embeddings of other complete graphs will also be mentioned. |
- | 2. Н.Я. Амбург (ИТЭФ), Цветные триангуляции и тензорная модель (продолжение) | + | **02.04.2025** |
- | + | ||
- | **25.09.2019** | + | |
- | 1. Ю.Ю. Кочетков (НИУ ВШЭ), | + | Н.М. Адрианов, |
+ | |||
+ | **26.03.2025** | ||
+ | |||
+ | Е.М. Крейнес, | ||
+ | |||
+ | Аннотация: | ||
+ | |||
+ | Теория линейных отображений, | ||
+ | |||
+ | Доклад основан на серии совместных работ с А. Гутерманом, | ||
+ | |||
+ | **19.03.2025** | ||
+ | |||
+ | 1. Н.М. Адрианов, | ||
+ | |||
+ | 2. Разное | ||
+ | |||
+ | |||
+ | **12.03.2025** | ||
+ | |||
+ | Сизиков Андрей | ||
+ | |||
+ | Аннотация: | ||
+ | |||
+ | **05.03.2025** | ||
+ | |||
+ | Н.М. Адрианов, Деформации минимальных | ||
+ | |||
+ | Аннотация: | ||
+ | В докладе будут представлены | ||
+ | - сети семейств Фрида, содержащие функции Белого | ||
+ | - некоторые другие семейства Фрида, | ||
+ | |||
+ | **26.02.2025** | ||
+ | |||
+ | Bogatyrev A.B. (INM RAS, MCFAM, MSU, HSE), Schottky model of Riemann surfaces and efficient variational formulae | ||
+ | |||
+ | Abstract: Schottky uniformization of Riemann surfaces had been used for the | ||
+ | efficient calculations with the surfaces and their moduli since the | ||
+ | end of 1980-ies. I will give a review | ||
+ | of this model and related computational algorithms. | ||
+ | solve various equations in the moduli spaces one needs explicit | ||
+ | formulae relating variations of function theoretic objects | ||
+ | like abelian integrals to the variations of the group generators. | ||
+ | Formulae of this kind were suggested by the author in 1997 and their | ||
+ | computer | ||
+ | remarkable | ||
+ | |||
+ | **19.02.2025** <color # | ||
+ | |||
+ | 1. Ю.Ю. Кочетков, О пространственных бильярдах с гравитацией. | ||
2. Разное. | 2. Разное. | ||
- | **18.09.2019** | + | **12.02.2025** |
- | 1. Г.Б. Шабат, | + | 1. Г.Б. Шабат, |
- | 2. Н.Я. Амбург (ИТЭФ), Цветные триангуляции и тензорная модель | + | 2. Разное. |
- | + | ||
- | **11.09.2019** | + | |
- | Г.Б. Шабат, Критическая фильтрация и отображение Ляшко-Лойенги | + | **11.12.2024** |
- | **04.09.2019** ВНИМАНИЕ: | + | А. Фролов, |
- | 1. Pálfia Miklós, On the recent advances in the multivariable theory | + | **04.12.2024** |
- | of operator monotone functions and means | + | |
- | Functional Analysis Research Group, Institute of Mathematics, | + | |
- | University of Szeged, Hungary, | + | |
- | Sungkyunkwan University, Korea | + | |
- | Abstract: | + | Г.Б. Шабат, Автоморфизмы кривых рода 2 (продолжение) |
- | The origins of this talk go back to the fundamental theorem of Loewner | + | |
- | in 1934 on operator monotone real functions and also to | + | |
- | the hyperbolic geometry of positive matrices. Loewner' | + | |
- | characterizing one variable operator monotone functions has been | + | |
- | very influential in matrix analysis and operator theory. Among others | + | |
- | it lead to the Kubo-Ando theory of two-variable operator means | + | |
- | of positive operators in 1980. One of the nontrivial means of the | + | |
- | Kubo-Ando theory is the non-commutative generalization of the | + | |
- | geometric mean which is intimately related to the hyperbolic, | + | |
- | non-positively curved Riemannian structure of positive matrices. | + | |
- | This geometry provides a key tool to define multivariable | + | |
- | generalizations of two-variable operator means. Arguably the most | + | |
- | important | + | |
- | example of them all is the Karcher mean which is the center of mass on | + | |
- | this manifold. This formulation enables us to define this mean | + | |
- | for probability measures on the cone of positive definite matrices | + | |
- | extending further the multivariable case. Even the infinite | + | |
- | dimensional | + | |
- | case of positive operators is tractable by abandoning the Riemannian | + | |
- | structure in favor of a Banach-Finsler structure provided by | + | |
- | Thompson' | + | |
- | This metric enables us to develop a general theory of means of | + | |
- | probability measures defined as unique solutions of nonlinear operator | + | |
- | equations on the cone, with the help of contractive semigroups | + | |
- | of nonlinear operators. We also introduce the recently established | + | |
- | structure theory of multivariable operator monotone functions | + | |
- | extending the classical result | + | |
- | of Loewner into the non-commutative multivariable realm of free | + | |
- | functions, providing theoretically explicit closed formulas for our | + | |
- | multivariable | + | |
- | operator means. | + | |
- | 2. F. Pakovich, COMMUTING RATIONAL FUNCTIONS REVISITED | + | **27.11.2024** |
- | Ben Gurion University, Israel | + | |
- | Abstract | + | |
- | Let A and B be rational functions on the Riemann sphere. The classical | + | |
- | Ritt theorem states that if A and B commute and do not have an iterate | + | **20.11.2024** |
- | in common, then up to a conjugacy they are either powers, or Chebyshev | + | |
- | polynomials, or Latt`es maps. This result however provides no | + | Г.Б. Шабат, Автоморфизмы кривых рода 2 |
- | information about commuting rational functions which do have a common | + | |
- | iterate. On the other hand, non-trivial examples of such functions | + | **06.11.2024** |
- | exist and were constructed already by Ritt. In the talk we present new | + | |
- | results concerning this class of commuting rational functions. In | + | Г.Б. Шабат, О работах Воеводского. |
- | particular, we describe a method which permits to describe all | + | |
- | rational functions commuting with a given rational function. | + | |
+ | **09.10.2024** | ||
+ | |||
+ | 1. О. Белоус, О семействах деревьев | ||
+ | |||
+ | 2. А. Гранухин, | ||
+ | |||
+ | 3. А. Фролов, Г.Б. Шабат, А. Юран, TBA | ||
+ | |||
+ | 4. Разное. | ||
+ | |||
+ | **02.10.2024** | ||
+ | |||
+ | Ю. Ю. Кочетков, Математический и физический бильярды в тетраэдре | ||
+ | |||
+ | **25.09.2024** | ||
+ | |||
+ | Г. Б. Шабат, Кривые рода 2 как пространственные квинтики | ||
+ | |||
+ | **18.09.2024** | ||
+ | |||
+ | Н.Я. Амбург, | ||
+ | |||
+ | Аннотация. Я расскажу о дипломной работе студентки факультета математики ВШЭ Сухаревой Полины. | ||
+ | Ее работа связана с неопубликованной работой А.К. Звонкина о кубическом семействе | ||
+ | |||
+ | |||
+ | ---- | ||
+ | **[[[[: | ||
**Архив** | **Архив** | ||
+ | |||
+ | [[[[: | ||
+ | |||
+ | [[[[: | ||
+ | |||
+ | [[[[: | ||
+ | |||
+ | [[[[: | ||
+ | |||
+ | [[[[: | ||
[[[[: | [[[[: |