Различия

Показаны различия между двумя версиями страницы.

Ссылка на это сравнение

Предыдущая версия справа и слева Предыдущая версия
Следующая версия
Предыдущая версия
vecher-vesna-2020 [05.05.2020 22:10]
timashev
vecher-vesna-2020 [08.04.2025 16:43] (текущий)
Строка 112: Строка 112:
  
 == Домашнее задание: == == Домашнее задание: ==
-  * 39,6, 39.15ел, 39.19, 39,23.+  * 39.6, 39.15ел, 39.19, 39.23.
  
 ---- ----
Строка 242: Строка 242:
 == Домашнее задание: == == Домашнее задание: ==
   * 43.36а, 43.40, 43.45а (при n=3), 44.7, 46.6гж, 46.14.   * 43.36а, 43.40, 43.45а (при n=3), 44.7, 46.6гж, 46.14.
 +
 +----
 +
 +=== 12 мая 2020 ===
 +
 +== Лекция 13 ==
 +
 +__Симметрические (самосопряжённые) операторы__. Наличие собственного вектора у симметрического оператора. Канонический вид матрицы симметрического оператора. Приведение симметрических билинейных и квадратичных функций к главным осям. Неотрицательные и положительно определённые симметрические операторы, пример: A*·A, где A — произвольный оператор. Критерий неотрицательности и положительной определённости симметрического оператора в терминах собственных значений. Извлечение квадратного корня из неотрицательного и положительно определённого оператора.
 +
 +__Полярное разложение__ невырожденного линейного оператора в евклидовом пространстве.
 +
 +== Семинар ==
 +
 +Приведение квадратичной функции к главным осям (45.19и). Полярное разложение линейного оператора.
 +
 +== Домашнее задание: ==
 +  * 45.1, 45.4г, 45.14, 45.15★, 45.19е, 46.16бв (полярное разложение в обоих порядках).
 +
 +----
 +
 +=== 19 мая 2020 ===
 +
 +== Лекция 13 ==
 +
 +__Тензоры__: определение, примеры тензоров малых валентностей (скаляры, ковекторы, векторы, билинейные функции, сопоставление линейному оператору тензора типа (1,1)), определитель как тензор типа (n,0). Операции над тензорами: сложение, умножение на скаляры, __тензорное умножение__, их свойства.
 +
 +__Тензорный базис__ пространства тензоров типа (p,q), его размерность. __Компоненты__ тензора, их преобразование при замене координат в основном пространстве. Правило Эйнштейна. Операции над тензорами в координатах. Изоморфизм пространств линейных операторов и тензоров типа (1,1) над основным пространством.
 +
 +== Семинар ==
 +
 +Вычисление значений тензоров (47.3а). Разложимость тензоров в тензорное произведение (47.1ад).
 +
 +== Домашнее задание: ==
 +  * 47.1вг, 47.3б, 47.4;
 +  * ★ тензор det не разложим в тензорное произведение тензоров меньшей валентности.
 +
 +----
 +
 +=== 26 мая 2020 ===
 +
 +== Лекция 15 ==
 +
 +__Ковариантные__ и __контравариантные__ тензоры. __Симметрические__ и __кососимметрические__ тензоры. Операции симметризации и альтернирования тензоров, их свойства. 
 +
 +__Внешнее умножение__ кососимметрических тензоров, его свойства: антикоммутативность, ассоциативность, внешнее произведение ковекторов, его геометрический смысл. Базис и размерность пространства кососимметрических тензоров данной валентности. 
 +
 +Канонический вид кососимметрической билинейной функции, алгоритм приведения к каноническому виду с использованием внешнего умножения.
 +
 +== Семинар ==
 +
 +Вычисление компонент тензора при переходе к новому базису (47.5). Приведение кососимметрической билинейной функции к каноническому виду (37.33б).
 +
 +== Домашнее задание: ==
 +  * 47.7бв, 47.14а, 37.33авг.
 +
 +----
 +
 +== Итоговая контрольная работа: ==
 +31 мая, 11:00.
 +
 +== Зачёты: ==
 +  * 4 июня, 18:30;
 +  * 7 июня, 11:00.
 +
 +----
 +
 +== Экзамен по курсу: ==
 +13 июня, 11:00.
 +
 +{{:staff:timashev:linalg-20.pdf|Программа экзамена}}