Это старая версия документа!
Лекции по алгебре, 1 курс, 2 поток
Лектор: Э.Б. Винберг
1-я лекция 02.09. Решение систем линейных уравнений методом Гаусса. Системы однородных линейных уравнений с числом уравнений, меньшим числа неизвестных.
2-я лекция 06.09. Абелевы группы (аддитивные и мультипликативные). Подгруппы. Кольца и поля. Подкольца и подполя.
3-я лекция 09.09. Операции над матрицами: сложение, умножение на число (элемент поля), умножение матриц; их свойства. Кольцо M_n(K) квадратных матриц.
Поле комплексных чисел (аксиоматическое определение), его существование и единственность (с точностью до изоморфизма).
4-я лекция 16.09. Матричная модель поля C.
Комплексное сопряжение. Геометрическое изображение и тригонометрическая форма комплексного числа. Умножение, деление, возведение в степень и извлечение корня в тригонометрической форме. Группа корней n-й степени из единицы.
Общая конструкция квадратичного расширения поля.
5-я лекция 20.09. Векторные пространства. Простейшие следствия аксиом. Подпространства. Линейные комбинации векторов и линейная выражаемость. Линейно зависимые (независимые) системы векторов. Три леммы о линейной зависимости, в том числе третья - «основная». Линейная оболочка <S> подмножества S векторного пространства. Порождающие системы векторов. Конечномерные векторные пространства. Следствие основной леммы о линейной зависимости: если векторное пространство порождается n векторами, то любые m>n векторов линейно зависимы.
6-я лекция 27.09. Базис и размерность (конечномерного) векторного пространства. Изоморфность векторных пространств одинаковой размерности.
Дополнение любой линейно независимой системы векторов до базиса. Максимальные линейно независимые системы векторов заданного подмножества S векторного пространства V как базисы линейной оболочки этого подмножества. Ранг подмножества S<V. Теорема о размерности подпространства.
Ранг матрицы (ранг системы ее строк). Теорема о том, что ранг матрицы равен числу ненулевых строк в ступенчатой матрице, к которой она приводится элементарными преобразованиями строк.
7-я лекция 30.09. Применение понятия ранга матрицы к исследованию систем линейных уравнений: критерии совместности и определенности, размерность пространства решений системы однородных линейных уравнений. Связь между множествами решений совместной системы линейных уравнений и соответствующей системы однородных линейных уравнений.
Теорема о том, что ранг матрицы равен рангу системы ее столбцов и, следовательно, не меняется при элементарных преобразованиях столбцов. Ранг произведения матриц.
8-я лекция 04.10. Транспонирование матриц, его свойства.
Квадратные системы линейных уравнений. Невырожденные квадратные матрицы (ранг равен порядку матрицы).
Обратная матрица, ее единственность. Теорема о том, что квадратная матрица обратима тогда и только тогда, когда она невырожденна. Нахождение обратной матрицы при помощи элементарных преобразований строк.
Описание всех базисов n-мерного векторного пространства. Формулы преобразования координат.
9-я лекция 07.10. Определители 2-го и 3-го порядков, их геометрический смысл.
Перестановки, их четность и знак. Изменение знака перестановки при транспозиции.
Определение определителя квадратной матрицы (явное выражение). Основные свойства определителя. Определитель треугольной матрицы. Вычисление определителя с помощью элементарных преобразований строк.
10-я лекция 14.10. Критерий вырожденности матрицы в терминах ее определителя. Определитль транспонированной матрицы. Определитель матрицы с углом нулей.
Задача интерполяции и определитель Вандермонда.
Разложение определителя по строке (столбцу).