(совместно с
Н.С.Дергачёвой)
Решётки Форестера и маленькие нелейтоновы комплексы Forester's lattices and small non-Leighton complexes Journal of Topology and Analysis (в печати) arXiv:2407.06680 | Мы строим два конечных CW-комплекса, один из которых гомеоморфен комплексу с одной двумерной клеткой, так, что эти комплексы имеют общее накрытие, но не имеют общего конечного накрытия. |
(совместно с
О.К.Каримовой)
Конечные симметрические группы сильно вербально замкнуты Алгебра и логика (в печати) arXiv:2405.01179 | Отвечая на вопрос А. В. Васильева, мы показываем, что каждая конечная симметрическая (или знакопеременная) группа H является ретрактом всякой группы, содержащей H в качестве вербально замкнутой подгруппы. |
(совместно с
Н.С.Дергачёвой)
Очень маленькие нелейтоновы комплексы arXiv:2403.09803 | Насколько сложными обязаны быть два конечных двумерных комплекса, имеющих общее накрытие, но не имеющих общего конечного накрытия? Мы получаем почти окончательный ответ: минимальное возможное число треугольников в псевдосимплициальной триангуляции каждого из этих комплексов — это одно из трёх чисел: 3, 4 или 5. |
(совместно с
Ф.Д.Денисовым)
Центр конечно порождённой сильно вербально замкнутой группы почти всегда чист The centre of a finitely generated strongly verbally closed group is almost always pure Quarterly Journal of Mathematics, 75:3 (2024), 1149-1156 arXiv:2308.06837 | Из утверждения, сформулированного в заголовке, вытекает, что многие интересные группы, например, все неабелевы группы кос или SL100(ℤ) — не сильно вербально замкнуты, то есть они могут быть вложены в бо́льшие конечно порождённые группы в качестве вербально замкнутых подгрупп, не являющихся ретрактами. |
(совместно с
М.С.Тереховым)
Инвариантные системы взвешенных представителей arXiv:2306.11883 | Известно, что если в графе Г можно уничтожить все подграфы, изоморфные данному конечному графу K, удалив n рёбер, то в Г можно уничтожить все подграфы, изоморфные графу K, удалив не более |E(K)|⋅n рёбер, образующих множество, инвариантное относительно всех автоморфизмов. Мы строим первые примеры (связных) графов K, для которых эта оценка не является точной. В основе наших рассуждений лежит «взвешенный аналог» ранее известной оценки цены симметрии. |
(совместно с
М.А.Михеенко и В.А.Романьковым)
Уравнения над разрешимыми группами Equations over solvable groups Journal of Algebra, 638 (2024), 739-750 arXiv:2303.13240 | Не всякое невырожденное уравнение над метабелевой группой имеет решение в большей метабелевой группе. Однако наличие в разрешимой группе субнормального ряда с абелевыми факторами без кручения гарантирует существование такого решения в некоторой большей группе с субнормальным рядом такой же длины с абелевыми факторами без кручения (и даже для систем уравнений имеет место аналогичный факт). |
(совместно с
М.А.Михеенко)
Ещё одна теорема о свободе: конечные и локально индикабельные группы Yet another Freiheitssatz: Mating finite groups with locally indicable ones Glasgow Mathematical Journal, 65:2 (2023), 337-344 arXiv:2204.01122 |
Мы доказываем общий факт, включающий в себя в качестве частных случаев
|
(совместно с
В.Ю.Мирошниченко и А.Ю.Ольшанским)
Конечные и нильпотентные сильно вербально замкнутые группы Finite and nilpotent strongly verbally closed groups Journal of Algebra and Its Applications, 22:09 (2023), 2350188 arXiv:2109.12397 | Мы показываем, в частности, что, если конечная группа H является ретрактом всякой конечной группы, содержащей H в качестве вербально замкнутой подгруппы, то центр группы H выделяется в ней прямым сомножителем. |
(совместно с
Н.С.Дергачёвой)
Маленькие нелейтоновы двумерные комплексы Small non-Leighton two-complexes Math. Proc. Cambridge Philos. Soc., 174:2 (2023), 385-391 arXiv:2108.01398 | Сколько двумерных клеток должны содержать два конечных CW-комплекса, имеющих общее накрытие, но не имеющих общего конечного накрытия? Теорема Лейтона говорит, что двумерные клетки в обоих комплексах должны быть. Мы строим почти (?) минимальный пример с двумя двумерными клетками в каждом комплексе. |
(совместно с
А.О.Захаровым)
Аналог усиленной гипотезы Ханны Нейман в почти свободных группах и почти свободных произведениях An analogue of the strengthened Hanna Neumann conjecture for virtually free groups and virtually free products Michigan Mathematical Journal, 74:2 (2024), 347-356 arXiv:2106.05821 | Теорема Минеева–Фридмана, ранее известная как (усиленная) гипотеза Ханны Нейман, даёт неулучшаемую оценку для ранга пересечения двух подгрупп свободной группы. Мы получаем аналог этого неравенства, применимый к двум произвольным подгруппам почти свободной группы (или, более общо, группы, содержащей свободное произведение левоупорядочиваемых групп в качестве подгруппы конечного индекса). |
(совместно с
Е.К.Брусянской)
О числе эпи-, моно- и гомоморфизмов групп Известия РАН. Сер. мат., 86:2 (2022), 25-33 arXiv:2012.03123 | Число гомоморфизмов из группы F в группу G делится, как известно, на наибольший общий делитель порядка группы G и экспоненты группы F/[F,F]. Мы исследуем вопрос о том, что можно сказать про число гомоморфизмов, удовлетворяющих некоторым естественным условиям вроде инъективности или сюръективности. Простейшим нетривиальным следствием наших результатов является следующий факт: в любой конечной группе число порождающих пар (x,y) таких, что x3=1=y5, делится на наибольший общий делитель пятнадцати и порядка группы [G,G]⋅{g15 | g∈G}. |
(совместно с
В.Ю.Березнюком)
Коммутаторная длина степеней в свободных произведениях групп Commutator length of powers in free products of groups Proc. Edinburgh Math. Soc., 65:1 (2022), 102-119 arXiv:2008.02861 | Для данных групп A и B, какова минимальная возможная коммутаторная длина 2020-й (например) степени элемента свободного произведения A∗B, не сопряжённого элементам свободных множителей? Исчерпывающий ответ на этот вопрос пока неизвестен, но мы можем ответить почти точно: этот минимум есть одно из двух чисел (просто зависящих от A и B). Мы рассматриваем также другие подобные задачи. |
Фундаментальная группа бутылки Клейна не сильно вербально замкнута,
но очень близка к этому званию
The Klein bottle group is not strongly verbally closed, though awfully close to being so Canadian Mathematical Bulletin, 64:2 (2021), 491-497 arXiv:2006.15523 | Согласно теореме Мажуги фундаментальная группа H любой поверхности, кроме, возможно, бутылки Клейна, является ретрактом всякой конечно порождённой группы, содержащей H в качестве вербально замкнутой подгруппы. Оказывается, что бутылка Клейна действительно является исключением, но обладает очень близким свойством. |
(совместно с
Н.М.Луневой)
Инвариантные системы представителей, или Цена симметрии Invariant systems of representatives, or The cost of symmetry Discrete Mathematics, 344:6 (2021), 112361 arXiv:1908.03315 | Пусть известно, что в графе можно уничтожить все стоугольники, удалив 2019 рёбер. Сколько рёбер заведомо достаточно удалить, если мы хотим уничтожить все стоугольники так, чтобы множество удаляемых рёбер было инвариантно относительно всех автоморфизмов исходного графа? Работа содержит решение подобных задач, а также несколько открытых вопросов на эту тему. |
(совместно с
А.Н.Понфиленко)
Пересечение подгрупп в почти свободных группах и почти свободных произведениях Intersections of subgroups in virtually free groups and virtually free products Bull. Austral. Math. Soc., 101:2 (2020), 266-271 arXiv:1904.07350 | Эта заметка содержит (короткое) доказательство следующего обобщения теоремы Минеева–Фридмана (ранее известной как гипотеза Ханны Нейман): если A и B — нетривиальные свободные подгруппы почти свободной группы, содержащей свободную подгруппу индекса n, то rank(A∩B)-1⩽n(rank(A)-1)(rank(B)-1). Мы получаем также аналог этого утверждения для почти свободных произведений. |
(совместно с
М.А.Рябцевой)
Размерность множества решений системы уравнений в алгебраической группе The dimension of solution sets to systems of equations in algebraic groups Israel Journal of Mathematics, 237:1 (2020), 141-154 arXiv:1903.05236 | Теорема Гордона—Родригеса-Виллегаса утверждает, что в конечной группе число решений системы уравнений (без коэффициентов) делится на порядок этой группы, если ранг матрицы, составленной из сумм показателей при j-м неизвестном в i-м уравнении, меньше, чем число неизвестных. Мы доказываем аналог этого факта (и его известных обобщений) для алгебраических групп. В частности, из наших результатов вытекает, что размерность каждой неприводимой компоненты многообразия гомоморфизмов из конечно порождённой группы с бесконечным индексом коммутанта в алгебраическую группу G не меньше, чем dim G. |
(совместно с
Е.К.Брусянской и А.В.Васильевым)
Что общего между теоремами Фробениуса, Соломона и Ивасаки о делимости в группах? What do Frobenius's, Solomon's, and Iwasaki's theorems on divisibility in groups have in common? Pacific Journal of Mathematics, 302:2 (2019), 437-452 arXiv:1806.08870 | Наш результат включает в себя естественным образом теорему Фробениуса (1895) о числе решений уравнения xn=1 в группе, теорему Соломона (1969) о числе решений в группе системы уравнений, в которой уравнений меньше, чем неизвестных, и теорему Ивасаки (1985) о корнях из подгрупп. Имеются и другие любопытные следствия о группах и кольцах. |
(совместно с
А.М.Мажугой и В.Ю.Мирошниченко)
Почти свободные группы без конечных нормальных подгрупп сильно вербально замкнуты Virtually free finite-normal-subgroup-free groups are strongly verbally closed Journal of Algebra, 510 (2018), 319-330 arXiv:1712.03406 | Всякая почти свободная группа H, не имеющая неединичных конечных нормальных подгрупп, (в частности, бесконечная диэдральная группа) является ретрактом любой конечно порождённой группы, содержащей H в качестве вербально замкнутой подгруппы. |
(совместно с
А.М.Мажугой)
Вербально замкнутые почти свободные подгруппы Мат. сборник, 209:6 (2018), 75-82 arXiv:1702.07761 | Теорема Мясникова–Романькова утверждает, что всякая вербально замкнутая подгруппа конечно порождённой свободной группы является ретрактом. Мы доказываем, что все свободные (и многие почти свободные) вербально замкнутые подгруппы являются ретрактами в любых конечно порождённых группах. |
(совместно с
С.В.Ивановым)
Квазипериодические и смешанные коммутаторные разложения в свободных произведениях групп Quasiperiodic and mixed commutator factorizations in free products of groups Bull. London Math. Soc., 50:5 (2018), 832-844 arXiv:1702.01379 | В свободной группе, как известно, никакой неединичный коммутатор не является истинной степенью. Мы доказываем одну общую теорему, из которой вытекает несколько любопытных фактов, например, следующее усиление упомянутого выше утверждения: если в свободной группе неединичный коммутатор разложить в произведение нескольких сопряжённых между собой элементов, то все эти элементы обязательно окажутся попарно разными. |
(совместно с
А.М.Мажугой и А.Н.Понфиленко)
Уравновешенные разложения на множители в некоторых алгебрах Мат. просвещение, 21 (2017), 136-144 arXiv:1607.01957 | Мы доказываем, что во всяком поле характеристики не два и не три, кроме пятиэлементного поля, каждый элемент раскладывается в произведение четырёх множителей, сумма которых равна нулю. Мы также находим все k,n,q такие, что каждая матрица n x n над полем из q элементов раскладывается в произведение k коммутирующих матриц с нулевой суммой. Эту работу можно считать продолжением этой. |
(совместно с
А.Б.Томом)
Новые топологические методы решения уравнений над группами New topological methods to solve equations over groups Algebraic and Geometric Topology, 17:1 (2017), 331-353 arXiv:1509.01376 | Мы доказываем, что уравнение w(x,y)=1 над гиперлинейной группой (например, над любой конечной группой) G имеет решение в некоторой большей группе H, если слово w(x,y) (в алфавите GU{x±1, y±1} ) таково, что слово, получающееся из него стиранием букв, лежащих в G, не лежит во втором члене нижнего центрального ряда свободной группы F(x,y). Если группа G конечна, то группа H также может быть выбрана конечной. |
(совместно с
А.А.Мкртчян)
Странная делимость в группах и в кольцах Strange divisibility in groups and rings Archiv der Mathematik, 108:5 (2017), 441-451 arXiv:1506.08967 | Мы доказываем одну общую теорему о делимости, из которой вытекает, например, что в любой группе число порождающих пар (и троек, и четвёрок...) всегда делится на порядок коммутанта этой группы. Другое следствие говорит, что число пифагоровых троек (и четвёрок, и пятёрок...) обратимых элементов в ассоциативном кольце всегда делится на порядок мультипликативной группы этого кольца. |
(совместно с
А.Н.Васильевым)
Уравновешенные разложения на множители Balanced factorizations American Mathematical Monthly, 123:10 (2016), 989-1000 arXiv:1506.01571 | Всякое рациональное число можно разложить в произведение нескольких рациональных чисел, сумма которых равна нулю. Это простое, но нетривиальное, утверждение предлагалось в качестве задачи на олимпиаде для школьников. Мы полностью решаем аналогичные вопросы в конечных полях и в некоторых других кольцах, например, в алгебрах комплексных и вещественных матриц, а также формулируем несколько открытых вопросов. |
(совместно с
А.К.Монгуш)
Финитно аппроксимируемые алгоритмически конечные группы, их подгруппы и прямые произведения Мат. заметки, 98:3 (2015), 372–377 arXiv:1402.0887 | Мы строим конечно порождённую бесконечную рекурсивно представленную финитно аппроксимируемую алгоритмически конечную группу G, отвечая тем самым на вопрос Мясникова и Осина. При этом группа G «сильно бесконечна» и «сильно алгоритмически конечна», в том смысле, что G содержит бесконечную абелеву нормальную подгруппу, а все конечные декартовы степени группы G алгоритмически конечны (то есть ни для какого n не существует алгоритма, выписывающего бесконечное число попарно различных элементов группы Gn). Мы формулируем также несколько открытых вопросов на эту тему. |
(совместно с
М.В.Милентьевой)
Большое и симметричное: теорема Макаренко–Хухро о тождествах — без тождеств Large and symmetric: The Khukhro–Makarenko theorem on laws — without laws Journal of Algebra, 424 (2015), 222-241 arXiv:1309.0571 | Предлагается обобщение теоремы Макаренко–Хухро о больших характеристических подгруппах с тождеством. Из этой обобщённой теоремы выводятся новые результаты о группах, алгебрах, графах и других структурах. Например, про группы мы получаем факт, в некотором смысле двойственный теореме Макаренко–Хухро. А про графы мы получаем аналог этой теоремы, в котором планарность играет роль полилинейного тождества. Мы отвечаем также на один вопрос Макаренко и Шумяцкого. |
(совместно с
Е.В.Френкель)
Коммутатор не может быть степенью в группе без кручения с метрическим условием малого сокращения arXiv:1210.7908 | Неединичный коммутатор не может быть истинной степенью в группе без кручения с условием малого сокращения C'(λ) при достаточно маленьких λ. |
(совместно с
А.Ю.Ольшанским и Д.В.Осиным)
О топологизируемых и нетопологизируемых группах On topologizable and non-topologizable groups Topology and its Applications, 160:16 (2013), 2104-2120 arXiv:1210.7895 | Группа называется наследственно нетопологизируемой, если никакая её секция (то есть факторгруппа подгруппы) не допускает недискретной отделимой групповой топологии. Мы строим первые примеры бесконечных наследственно нетопологизируемых групп. Это, в частности, означает, что c-компактность не влечёт компактность для топологических групп. Мы также отвечаем на несколько других вопросов Дикраняна и Успенского о c-компактности. С другой стороны, мы предлагаем метод построения топологизируемых групп, основанный на генерических свойствах в пространстве помеченных k-порождённых групп. В качестве приложения мы строим недискретную квазициклическую топологическую группу конечного периода, отвечая тем самым на вопрос Морриса и Образцова. |
(совместно с
И.В.Аржанцевым, В.В.Батыревым, Е.И.Буниной, Е.С.Голодом, А.Э.Гутерманом, М.В.Зайцевым, А.И.Зобниным, В.Т.Марковым, А.А.Нечаевым, А.Ю.Ольшанским, Е.А.Поршневым и Ю.Г.Прохоровым)
Студенческие олимпиады по алгебре на мехмате МГУ МЦНМО, 2012 | В эту книжку вошли задачи первых пяти олимпиад (2006–2010) и их решения. |
(совместно с
А.А.Мкртчян и с дополнением Д.В.Трушина)
Сколько наборов элементов группы обладает данным свойством? How many tuples of group elements have a given property? With an appendix by Dmitrii V. Trushin International Journal of Algebra and Computation, 24:4 (2014), 413-428 arXiv:1205.2824 | Теорема Гордона–Родригеса-Виллегаса, обобщающая теорему Соломона, говорит, что в любой группе число решений системы уравнений без коэффициентов делится на порядок этой группы, если ранг матрицы, составленной из сумм показателей степеней при i-м неизвестном в j-м уравнении, меньше числа неизвестных. Мы обобщаем эту теорему в двух направлениях: во-первых, мы рассматриваем уравнения с коэффициентами, а во-вторых, мы рассматриваем не только системы уравнений, но и произвольные формулы первого порядка в групповом языке (с константами). Из нашей теоремы можно вывести разные забавные факты. Например, число элементов группы, квадраты которых лежат в данной подгруппе, делится на порядок этой подгруппы. |
(совместно с
В.А.Брагиным и А.Б.Скопенковым)
Группы (Когда любая группа из n элементов циклическая?) Параграф 24 (стр.493-510) в книге «Элементы математики в задачах. Через олимпиады и кружки — к профессии», МЦНМО, 2018 arXiv:1108.5406 | В этой заметке, предназначенной для старшеклассников и младшекурсников, совсем элементарными средствами доказывается известный факт: все группы порядка n являются циклическими тогда и только тогда, когда n взаимно просто с φ(n). |
(совместно с
Е.В.Меньшовой)
Тождества аддитивной двоичной арифметики The identities of additive binary arithmetics Electronic Journal of Combinatorics, 19:1 (2012), #P40 arXiv:1102.5555 | Операции произвольной арности, выражающиеся через сложение по модулю 2n и побитовое сложение по модулю 2, допускают простое описание. Тождества, связывающие эти два сложения, имеют конечный базис. Более того, универсальная алгебра Z/2nZ с этими двумя операциями рационально эквивалентна нильпотентному кольцу и, следовательно, порождает шпехтово многообразие. |
(совместно с
Д.В.Барановым)
Экономное присоединение квадратных корней к группам Сибирский мат. журнал, 53:2 (2012), 250-257 arXiv:1101.3019 | Насколько нужно увеличить группу, чтобы в получившейся группе все элементы исходной группы являлись квадратами? Мы даём довольно точный ответ на этот вопрос (наилучшая возможная оценка сверху отличается от полученной оценки не более, чем в два раза) и формулируем несколько открытых вопросов на эту тему. |
(совместно с
Д.Е.Лурье)
Относительная гиперболичность и близкие свойства относительных копредставлений с одним дополнительным образующим и одним соотношением, являющимся истинной степенью унимодулярного слова Relative hyperbolicity and similar properties of one-generator one-relator relative presentations with powered unimodular relator Journal of Pure and Applied Algebra, 216:3 (2012), 524-534 arXiv:1010.4220 | Если к нетривиальной группе добавить один образующий и одно соотношение, являющееся истинной степенью слова с единичной суммой показателей степеней при добавленном образующем, то полученная группа будет содержать в качестве подгруппы свободный квадрат исходной группы, а также почти всегда (кроме одного очевидного исключения) будет содержать неабелеву свободную подгруппу. Если исходная группа не имеет инволюций или соотношение является по крайней мере третьей степенью, то полученная группа относительно гиперболична относительно исходной группы и SQ-универсальна. |
Комбинаторная теория групп и геометрия
Мат. просвещение, 13 (2009), 18-32 | В этой статье, предназначенной для детей от пятнадцати до девяноста девяти лет, в популярной форме рассказывается о некоторых связях между комбинаторной теорией групп и геометрией: о геометрической интерпретации вывода следствий из соотношений и о теории малых сокращений. |
(совместно с
Н.Ю.Макаренко, Ю.Б.Мельниковой и Е.И.Хухро)
Инвариантность относительно автоморфизмов и тождества Automorphism invariance and identities Bull. London Math. Soc., 41:5 (2009), 804-816 arXiv:0812.1359 | Если внешнее (полилинейное) коммутаторное тождество выполняется в большой подгруппе некоторой группы, то оно выполняется также в некоторой большой характеристической подгруппе. Аналогичные утверждения справедливы для алгебр и их идеалов или подпространств. Варьируя значение слова «большой», мы получаем много интересных фактов. Для произвольных (неполилинейных) тождеств аналогичные утверждения, вообще говоря, неверны. В качестве приложения полученных результатов мы получаем неулучшаемую оценку на ступень почти разрешимости расширений почти разрешимых групп при помощи почти разрешимых. |
(совместно с
Ю.Б.Мельниковой)
Короткое доказательство теоремы Макаренко–Хухро о больших характеристических подгруппах с тождеством Мат. сборник, 200:5 (2009), 33-36 arXiv:0805.2747 | Предлагается короткое доказательство и некоторое усиление теоремы Макаренко–Хухро о том, что каждая группа, почти удовлетворяющая внешнему коммутаторному тождеству, содержит характеристическую подгруппу конечного индекса, удовлетворяющую этому тождеству. Мы получаем также оценку для индекса такой характеристической подгруппы. |
Автоморфизмы и изоморфизмы групп и алгебр Шевалле
Automorphisms and isomorphisms of Chevalley groups and algebras Journal of Algebra, 324:10 (2010), 2608-2619 arXiv:0708.2256 | Присоединённая группа Шевалле ранга большего единицы над Q-алгеброй (или похожим кольцом), её элементарная подгруппа и соответствующее кольцо Ли имеют одинаковые группы автоморфизмов. Эти автоморфизмы явно описаны. |
Строение относительных копредставлений с одним соотношением
и их центры
The structure of one-relator relative presentations and their centres Journal of Group Theory, 12:6 (2009), 923-947 arXiv:math.GR/0701308 | Пусть G — нетривиальная группа без кручения и w — слово в алфавите GU{x1±1,..., xn±1} такое, что слово w', получающееся из w стиранием букв, лежащих в G, не является истинной степенью в свободной группе F(x1,..., xn). Мы показываем как свести изучение относительного копредставления H=<G, x1,..., xn | w=1> к случаю n=1. Оказывается, что «n-мерная» группа H может быть построена из аналогичных «одномерных» групп при помощи некоторой явной конструкции, отдалённо напоминающей сплетение. В качестве иллюстрации мы доказываем, что при n>1 центр группы H всегда тривиален. При n=1 центр группы H также почти всегда оказывается тривиальным; имеется несколько исключений и все они известны. |
SQ-универсальность относительных копредставлений с одним соотношением
Мат. сборник, 197:10 (2006), 87-108 arXiv:math.GR/0603468 | Если к нетривиальной группе без кручения добавить два образующих и одно произвольное соотношение, то всегда получится SQ-универсальная группа. По ходу доказательства этого утверждения мы устанавливаем ещё несколько фактов, имеющих самостоятельный интерес. Например, если к свободному произведению двух нетривиальных групп без кручения добавить один образующий и одно соотношение с единичной суммой показателей степеней при добавленном образующем, то также получится SQ-универсальная группа. |
Свободные подгруппы относительных копредставлений с одним соотношением
Алгебра и логика, 46:3 (2007), 290-298 arXiv:math.GR/0510582 | Пусть G — нетривиальная группа без кручения и w — произвольное слово в алфавите GU{x1±1,..., xn±1}. Мы доказываем, что при n>1 группа H=<G, x1,..., xn | w=1> всегда содержит неабелеву свободную подгруппу. При n=1 на вопрос о наличии свободных подгрупп в H удаётся полностью ответить в унимодулярном случае (то есть когда сумма показателей при x1 в слове w равна единице). В работе обсуждаются также некоторые обобщения этих результатов. |
(совместно с
А.В.Трофимовым)
Число нерешений уравнения в группе и нетопологизируемые группы без кручения The number of non-solutions of an equation in a group Journal of Group Theory, 8:6 (2005), 747-754 arXiv:math.GR/0411156 | Показано, что для любой пары кардиналов с бесконечной суммой найдётся такая группа и такое уравнение над этой группой, что первый кардинал является числом решений этого уравнения, а второй кардинал является числом нерешений этого уравнения. Построена бесконечная счётная нетопологизируемая группа без кручения. |
Гипотеза Кервера–Лауденбаха и копредставления простых групп
Алгебра и логика, 44:4 (2005), 399-437 arXiv:math.GR/0409146 |
Утверждение о том, что из непростой группы нельзя получить
неабелеву простую группу путём добавления одного образующего и одного
определяющего соотношения,
1) эквивалентно гипотезе Кервера–Лауденбаха; 2) становится верным при дополнительном предположении, что исходная непростая группа либо конечна, либо, напротив того, не имеет кручения. |
Как обобщить известные результаты об уравнениях над группами
Мат. заметки, 79:3 (2006), 409-419 arXiv:math.GR/0406382 | Известные факты о разрешимости уравнений над группами рассматриваются с более общей точки зрения. Доказывается обобщённый аналог теоремы о разрешимости унимодулярных уравнений над группами без кручения, который в качестве частного случая включает в себя многомерный вариант этой теоремы. Доказывается, что для унимодулярных уравнений над группами без кручения выполняется аналог теоремы Магнуса о свободе в том смысле, что существует решение, которое хорошо себя ведёт по отношению к свободным сомножителям исходной группы. |
Более древние статьи |
(совместно с
С.В.Ивановым)
The asphericity and Freiheitssatz for certain lot-presentations of groups International Journal of Algebra and Computation, 11:3 (2001), 291-300
(совместно с
О.В.Сипачёвой)
Topological solvability of equations over groups Communications in Algebra, 29:9 (2001), 4249-4265
(совместно с
С.В.Ивановым)
Solving equations of length at most six over torsion-free groups Journal of Group Theory, 3:3 (2000), 329-337
Equations over groups, quasivarieties, and a residual property of a free group
Journal of Group Theory, 2:3 (1999), 319-327
Asphericity tests
International Journal of Algebra and Computation, 7:4 (1997), 415-431
(совместно с
М.И.Прищеповым)
Метод спуска для уравнений над группами Вестник Московского университета. Серия 1: Математика. Механика, 1995:4 (1995), 90-93
A funny property of sphere and equations over groups
Communications in Algebra, 21:7 (1993), 2555-2575 |
English versions of my papers, а также работы других авторов по теории групп и иным разделам математики и физики можно найти в арХиве. Интересные статьи можно ещё поискать в ЖГТ и других журналах.
Рефераты на разные статьи можно попробовать найти здесь, а также здесь (если у вас есть доступ) и здесь.
Полезные книжки и статьи вы можете найти в «Генезисе» и в Библиотеке мех-мата (и здесь конечно). Можно также воспользоваться этим поисковиком.
Нерешённые пока задачи тоже нетрудно найти. ↑↑↑